"Descrizione" by Ark90 (12417 pt) | 2023-Oct-23 08:58 |
Evaluation | N. Experts | Evaluation | N. Experts |
---|---|---|---|
1 | 6 | ||
2 | 7 | ||
3 | 8 | ||
4 | 9 | ||
5 | 10 |
PEG-55 Propylene Glycol oleate is a chemical compound and is produced industrially by the esterification of polyoxyalkyl alcohols with oleic acid.
The name describes the structure of the molecule:
The synthesis process takes place in different steps:
It appears as a colourless to yellowish oily liquid.
What it is used for and where it is used
Cosmetics
As a viscosity control agent in cosmetics and, as a thickening agent, to regulate density and viscosity in formulas containing standard non-ionic, amphoteric, anionic and cationic surfactants, such as shampoos, shower gels.
Surfactant - Cleansing agent. Cosmetic products used to cleanse the skin utilise the surface-active action that produces a lowering of the surface tension of the stratum corneum, facilitating the removal of dirt and impurities.
Viscosity control agent. It controls and adapts viscosity to the required level for optimal chemical and physical stability of the product and dosage in gels, suspensions, emulsions, solutions.
It is a moderate solubiliser for perfumes, essential oils and fragrances. and can brighten solutions even under conditions of high amounts of essential oils.
Medical
It acts as a topical agent in pharmaceutical products where it shows good dermatological compatibility where it can be used in skin cleansing products in a range from pH5 to pH8.
Safety
The CIR Expert Panel considers PEG-55 Propylene Glycol oleate to be safe as used (concentrations no greater than 10%) in cosmetic formulations. Based on evidence of sensitization and nephrotoxicity in burn patients treated with a PEG-based antimicrobial preparation, the ingredients included in this review should not be used on damaged skin. (Johnson W Jr; Cosmetic Ingredient Review Expert Panel. Final report on the safety assessment of PEG-25 propylene glycol stearate, PEG-75 propylene glycol stearate, PEG-120 propylene glycol stearate, PEG-10 propylene glycol, PEG-8 propylene glycol cocoate, and PEG-55 propylene glycol oleate. Int J Toxicol. 2001;20 Suppl 4:13-26. doi: 10.1080/10915810152902556.)
Extracts from studies on PEG-55 Propylene Glycol oleate
The permeability enhancement effect of oleic acid (OA) and propylene glycol (PG) as well as their (1:1 v/v) combined mixture was studied using rat skin. The percutaneous drug administration is a challenge and an opportunity for drug delivery. To date, there is limited research that illustrates the mechanism of penetration enhancers and their combinations on the skin. This project aims to explore the skin diffusion and penetration enhancement of PG, OA, and a combination of PG-OA (1:1 v/v) on rat skin and to identify the potential synergistic effect of the two enhancers utilizing Raman spectroscopy. Dissected dorsal skin was treated with either PG or OA or their combination for predetermined time intervals after which the Raman spectra of the treated skin were collected with the enhancer. A spectrum of the wiped and the washed skin were also collected. The skin integrity was tested before and after exposure to PG. The skin histology proved that the skin integrity has been maintained during experiments and the results indicated that OA disrupted rat skin lipid as evident by changes in the lipid peak. The results also showed that PG and OA improved the diffusion of each other and created faster, yet reversible changes of the skin peaks. In conclusion, Raman spectroscopy is a potential tool for ex vivo skin diffusion studies. We also concluded that PG and OA have potential synergistic reversible effect on the skin (1).
PEG-55 Oleate propylene glycol was negative in clinical patch tests. Based on the available data, it is concluded that this ingredient is safe (concentrations not higher than 10%) in cosmetic formulations. Based on the available data, it was concluded that this ingredient are safe as used (concentrations no greater than 10%) in cosmetic formulations. Based on evidence of sensitization and nephrotoxicity in burn patients treated with a PEG-based antimicrobial preparation, the ingredient included in this review should not be used on damaged skin. (2).
CAS 86481-08-5
UNII 7RDE7PJS40
Synonyms:
References________________________
(1) Atef E, Altuwaijri N. Using Raman Spectroscopy in Studying the Effect of Propylene Glycol, Oleic Acid, and Their Combination on the Rat Skin. AAPS PharmSciTech. 2018 Jan;19(1):114-122. doi: 10.1208/s12249-017-0800-7.
Abstract. The permeability enhancement effect of oleic acid (OA) and propylene glycol (PG) as well as their (1:1 v/v) combined mixture was studied using rat skin. The percutaneous drug administration is a challenge and an opportunity for drug delivery. To date, there is limited research that illustrates the mechanism of penetration enhancers and their combinations on the skin. This project aims to explore the skin diffusion and penetration enhancement of PG, OA, and a combination of PG-OA (1:1 v/v) on rat skin and to identify the potential synergistic effect of the two enhancers utilizing Raman spectroscopy. Dissected dorsal skin was treated with either PG or OA or their combination for predetermined time intervals after which the Raman spectra of the treated skin were collected with the enhancer. A spectrum of the wiped and the washed skin were also collected. The skin integrity was tested before and after exposure to PG. The skin histology proved that the skin integrity has been maintained during experiments and the results indicated that OA disrupted rat skin lipid as evident by changes in the lipid peak. The results also showed that PG and OA improved the diffusion of each other and created faster, yet reversible changes of the skin peaks. In conclusion, Raman spectroscopy is a potential tool for ex vivo skin diffusion studies. We also concluded that PG and OA have potential synergistic reversible effect on the skin.
(2) Johnson W Jr; Cosmetic Ingredient Review Expert Panel. Final report on the safety assessment of PEG-25 propylene glycol stearate, PEG-75 propylene glycol stearate, PEG-120 propylene glycol stearate, PEG-10 propylene glycol, PEG-8 propylene glycol cocoate, and PEG-55 propylene glycol oleate. Int J Toxicol. 2001;20 Suppl 4:13-26. doi: 10.1080/10915810152902556.
Abstract. The ingredients considered in this safety assessment are polyethylene glycol ethers of either propylene glycol itself, propylene glycol stearate, propylene glycol oleate, or propylene glycol cocoate. They function in cosmetic formulations as surfactant--cleansing agents; surfactant-solubilizing agents; surfactant--emulsifying agents; skin conditioning agents--humectant; skin-conditioning agents--emollient; and solvents. Those in current use are used in only a small number of cosmetic formulations. Some are not currently used. Polyethylene Glycol (PEG) Propylene Glycol Cocoates and PEG Propylene Glycol Oleates are produced by the esterification of polyoxyalkyl alcohols with lauric acid and oleic acid, respectively. Although there is no information available on the method of manufacture of the other polymers, information was available describing impurities, including ethylene oxide (maximum 1 ppm), 1,4-dioxane (maximum 5 ppm), polycyclic aromatic compounds (maximum 1 ppm), and heavy metals-lead, iron, cobalt, nickel, cadmium, and arsenic included (maximum 10 ppm combined). In an acute oral toxicity study, PEG-25 Propylene Glycol Stearate was not toxic. An antiperspirant product containing 2.0% PEG-25 Propylene Glycol Stearate was nonirritating to mildly irritating to the eyes of rabbits. This product was also practically nonirritating to the skin of rabbits in single-insult occlusive patch tests. In a guinea pig sensitization test, PEG-25 Propylene Glycol Stearate was classified as nonallergenic at challenge concentrations of 25% and 50% in petrolatum. PEG-25 Propylene Glycol Stearate and PEG-55 Propylene Glycol Oleate were negative in clinical patch tests. Based on the available data, it was concluded that these ingredients are safe as used (concentrations no greater than 10%) in cosmetic formulations. Based on evidence of sensitization and nephrotoxicity in burn patients treated with a PEG-based antimicrobial preparation, the ingredients included in this review should not be used on damaged skin.
_____________________________________________________________________________
And a premise on PEG.
Since the PEG (1) family is numerous and is found in many cosmetic, cleaning and medicinal products and others, we need a cognitive premise on the subject that is rather complex from the point of view of safety because these products not only come into contact with the skin but, as in the case of medicine, they are also ingested.
PEG or polyethylene glycols polymerise the condensed ethylene oxide and water and are called polyethylene glycols, but in reality, they are complex chemical components, polymers bound together. For example, plastic is polyethylene and has a hard consistency, while polyethylene aggregated to the glycol forms a liquid.
The number that appears after the initials PEG represents the molecular weight and the higher this number is, the less it penetrates the skin.
Here below are some studies in Medicine that refer to the use of PEG Polyethylene glycol in various fields.
Intestine
Polyethylene glycol with or without electrolytes is effective for the treatment of functional constipation, both in adults and in paediatric patients, with great safety and tolerability. These preparations are the most effective osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short- and long-term. They are as effective as enemas in faecalomas, avoid the need for hospitalisation and are well tolerated by patients (especially when given without electrolytes) (2).
In the preparation for colonoscopy, polyethylene glycol tablets confirmed efficacy, acceptability, tolerance and safety similar to those of sodium phosphate (3).
For peripheral nerve repair (4).
Eyes
Dry eye syndrome is a disorder that affects 5-34% of the world's adult population with reduced quality of life. Artificial or lubricating tears are the most used therapy for treating this condition due to their low side effects profile, which attempt to modify the properties of the tear film. Polyethylene glycol has demonstrated clinical efficacy in the treatment of this condition (5).
Brain
Polyethylene glycol facilitates the neuroprotective effects of magnesium in head injuries (6).
Tumors
For transarterial chemoembolization, Polyethylene glycol is effective and safe for the treatment of liver cancer, as indicated by good tolerability, quality of life and high tumour response (7).
Cosmetics
Many types of PEG are hydrophilic and are used as creams, topical dermatological preparations and in cosmetic products such as surfactants, emulsifiers, detergents, humectants and skin conditioners.
Safety varies from type to type given the structural complexity (8).
References___________________________________________________________________
(1) Fruijtier-Pölloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 2005 Oct 15;214(1-2):1-38. doi: 10.1016/j.tox.2005.06.001.
(2) Mínguez M, López Higueras A, Júdez J. Use of polyethylene glycol in functional constipation and fecal impaction. Rev Esp Enferm Dig. 2016 Dec;108(12):790-806. doi: 10.17235/reed.2016.4571/2016.
Santos-Jasso KA, Arredondo-García JL, Maza-Vallejos J, Lezama-Del Valle P. Effectiveness of senna vs polyethylene glycol as laxative therapy in children with constipation related to anorectal malformation. J Pediatr Surg. 2017 Jan;52(1):84-88. doi: 10.1016/j.jpedsurg.2016.10.021.
(3) Chaussade S, Schmöcker C, Toulemonde P, Muñoz-Navas M, O'Mahony V, Henri F. Phosphate tablets or polyethylene glycol for preparation to colonoscopy? A multicentre non-inferiority randomized controlled trial. Surg Endosc. 2017 May;31(5):2166-2173. doi: 10.1007/s00464-016-5214-1.
Tsunoda T, Sogo T, Iwasawa K, Umetsu S, Oikawa-Kawamoto M, Inui A, Fujisawa T. Feasibility and safety of bowel cleansing using low-volume polyethylene glycol with ascorbic acid before pediatric colonoscopy: A pilot study. Dig Endosc. 2017 Mar;29(2):160-167. doi: 10.1111/den.12756.
(4) Hoffman AN, Bamba R, Pollins AC, Thayer WP. Analysis of polyethylene glycol (PEG) fusion in cultured neuroblastoma cells via flow cytometry: Techniques & optimization. J Clin Neurosci. 2017 Feb;36:125-128. doi: 10.1016/j.jocn.2016.10.032.
(5) Pérez-Balbuena AL, Ochoa-Tabares JC, Belalcazar-Rey S, Urzúa-Salinas C, Saucedo-Rodríguez LR, Velasco-Ramos R, Suárez-Sánchez RG, Rodríguez-Carrizalez AD, Oregón-Miranda AA. Efficacy of a fixed combination of 0.09 % xanthan gum/0.1 % chondroitin sulfate preservative free vs polyethylene glycol/propylene glycol in subjects with dry eye disease: a multicenter randomized controlled trial. BMC Ophthalmol. 2016 Sep 20;16(1):164. doi: 10.1186/s12886-016-0343-9.
Labetoulle M, Messmer EM, Pisella PJ, Ogundele A, Baudouin C. Safety and efficacy of a hydroxypropyl guar/polyethylene glycol/propylene glycol-based lubricant eye-drop in patients with dry eye. Br J Ophthalmol. 2017 Apr;101(4):487-492. doi: 10.1136/bjophthalmol-2016-308608.
(6) Busingye DS, Turner RJ, Vink R. Combined Magnesium/Polyethylene Glycol Facilitates the Neuroprotective Effects of Magnesium in Traumatic Brain Injury at a Reduced Magnesium Dose. CNS Neurosci Ther. 2016 Oct;22(10):854-9. doi: 10.1111/cns.12591.
(7) Aliberti C, Carandina R, Sarti D, Mulazzani L, Catalano V, Felicioli A, Coschiera P, Fiorentini G. Hepatic Arterial Infusion of Polyethylene Glycol Drug-eluting Beads for Primary and Metastatic Liver Cancer Therapy. Anticancer Res. 2016 Jul;36(7):3515-21.
(8) Jang HJ, Shin CY, Kim KB. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use. Toxicol Res. 2015 Jun;31(2):105-36. doi: 10.5487/TR.2015.31.2.105.
Evaluate |