X

Check the ingredients!
... live healthy!

 
Hello, Guest!
 
 

 
 
  Objects Tiiips Categories
L-acetylcarnitine
"L-acetylcarnitine studies"
by FRanier (9976 pt)
2019-May-08 16:23

Review Consensus: 9 Rating: 9 Number of users: 1
Evaluation  N. ExpertsEvaluation  N. Experts
1
  
6
  
2
  
7
  
3
  
8
  
4
  
9
  1
5
  
10
  

During the past two decades, many pharmacological strategies have been investigated for the management of painful neuropathies. However, neuropathic pain still remains a clinical challenge. A combination of therapies is often required, but unfortunately in most cases adequate pain relief is not achieved. Recently, attention has been focused on the physiological and pharmacological effects of L-acetylcarnitine in neurological disorders. There are a number of reports indicating that L-acetylcarnitine can be considered as a therapeutic agent in neuropathic disorders including painful peripheral neuropathies. In this review article, we will examine the antinociceptive and the neuroprotective effects of Lacetylcarnitine as tested in clinical studies and in animal models of nerve injury (1).

Peripheral nerve trauma remains a major cause of morbidity, largely due to the death of approximately 40% of innervating sensory neurons, and to slow regeneration after repair. Acetyl-L-carnitine (ALCAR) is a physiological peptide that virtually eliminates sensory neuronal death, and may improve regeneration after primary nerve repair. This study determines the effect of ALCAR upon regeneration after secondary nerve repair, thereby isolating its effect upon neuronal regenerative capacity. Two months after unilateral sciatic nerve division 1 cm nerve graft repairs were performed (n=5), and treatment with 50 mg/kg/day ALCAR was commenced for 6 weeks until harvest. Regeneration area and distance were determined by quantitative immunohistochemistry. ALCAR treatment significant increased immunostaining for both nerve fibres (total area 264% increase, P<0.001; percentage area 229% increase, P<0.001), and Schwann cells (total area 111% increase, P<0.05; percentage area 86% increase, P<0.05), when compared to no treatment. Regeneration into the distal stump was greatly enhanced (total area 2,242% increase, P=0.008; percentage area 3,034% increase, P=0.008). ALCAR significantly enhances the regenerative capacity of neurons that survive peripheral nerve trauma, in addition to its known neuroprotective effects (2).

BACKGROUND: Oxaliplatin (OHP) is severely neurotoxic and induces the onset of a disabling sensory peripheral neuropathy. Acetyl-L-carnitine (ALC), a natural compound with neuroprotective action, was tested to determine whether it plays a protective role in OHP-induced neuropathy. MATERIALS AND METHODS: Peripheral neuropathy was induced in Wistar rats, and the effect of OHP alone or in combination with ALC was assessed, using behavioral and neurophysiological methods. Moreover, ALC interference on OHP antitumor activity was investigated using several in vitro and in vivo models. RESULTS: ALC-co-treatment reduced the neurotoxicity of OHP when it was coadministered. Furthermore, the administration-of OHP, once OHP-induced neuropathy was established, significantly mitigated its severity. Finally, experiments in different tumor systems indicated that ALC does not interfere with the antitumor effects of OHP. CONCLUSION: ALC is effective in the prevention and treatment of chronic OHP-induced peripheral neurotoxicity in an experimental rat model (3).

Epigenetic mechanisms are involved in the pathophysiology of depressive disorders and are unique potential targets for therapeutic intervention. The acetylating agent L-acetylcarnitine (LAC), a well-tolerated drug, behaves as an antidepressant by the epigenetic regulation of type 2 metabotropic glutamate (mGlu2) receptors. It caused a rapid and long-lasting antidepressant effect in Flinders Sensitive Line rats and in mice exposed to chronic unpredictable stress, which, respectively, model genetic and environmentally induced depression. In both models, LAC increased levels of acetylated H3K27 bound to the Grm2 promoter and also increased acetylation of NF-ĸB-p65 subunit, thereby enhancing the transcription of Grm2 gene encoding for the mGlu2 receptor in hippocampus and prefrontal cortex. Importantly, LAC reduced the immobility time in the forced swim test and increased sucrose preference as early as 3 d of treatment, whereas 14 d of treatment were needed for the antidepressant effect of chlorimipramine. Moreover, there was no tolerance to the action of LAC, and the antidepressant effect was still seen 2 wk after drug withdrawal. Conversely, NF-ĸB inhibition prevented the increase in mGlu2 expression induced by LAC, whereas the use of a histone deacetylase inhibitor supported the epigenetic control of mGlu2 expression. Finally, LAC had no effect on mGlu2 knockout mice exposed to chronic unpredictable stress, and a single injection of the mGlu2/3 receptor antagonist LY341495 partially blocked LAC action. The rapid and long-lasting antidepressant action of LAC strongly suggests a unique approach to examine the epigenetic hypothesis of depressive disorders in humans, paving the way for more efficient antidepressants with faster onset of action (4).

Although regulation of energy metabolism has been linked with multiple disorders, its role in depression and responsiveness to antidepressants is less known. We found that an epigenetic and energetic agent, acetyl-l-carnitine (LAC, oral administration), rapidly rescued the depressive- and central and systemic metabolic-like phenotype of LAC-deficient Flinders Sensitive Line rats (FSL). After acute stress during LAC treatment, a subset of FSL continued to respond to LAC (rFSL), whereas the other subset did not (nrFSL). RNA sequencing of the ventral dentate gyrus, a mood-regulatory region, identified metabolic factors as key markers predisposing to depression (insulin receptors Insr, glucose transporters Glut-4 and Glut-12, and the regulator of appetite Cartpt) and to LAC responsiveness (leptin receptors Lepr, metabotropic glutamate receptors-2 mGlu2, neuropeptide-Y NPY, and mineralocorticoid receptors MR). Furthermore, we found that stress-induced treatment resistance in nrFSL shows a new gene profile, including the metabolic regulator factors elongation of long chain fatty acids 7 (Elovl7) and cytochrome B5 reductase 2 (Cyb5r2) and the synaptic regulator NPAS4. Finally, while improving central energy regulation and exerting rapid antidepressant-like effects, LAC corrected a systemic hyperinsulinemia and hyperglicemia in rFSL and failed to do that in nrFSL. These findings establish CNS energy regulation as a factor to be considered for the development of better therapeutics. Agents such as LAC that regulate metabolic factors and reduce glutamate overflow could rapidly ameliorate depression and could also be considered for treatment of insulin resistance in depressed subjects. The approach here serves as a model for identifying markers and underlying mechanisms of predisposition to diseases and treatment responsiveness that may be useful in translation to human behavior and psychopathology (5).

References________________________________________

(1) L-Acetylcarnitine: A Proposed Therapeutic Agent for Painful Peripheral Neuropathies
S Chiechio, A Copani, F Nicoletti, RW Gereau IV
Curr Neuropharmacol. 2006 Jul; 4(3): 233–237.

(2) Hart AM, Wiberg M, Terenghi G. Pharmacological enhancement of peripheral nerve regeneration in the rat by systemic acetyl-L-carnitine treatment. Neurosci. Lett. 2002;334:181–5

(3) Ghirardi O, Lo Giudice P, Pisano C, Vertechy M, Bellucci A, Vesci L, Cundari S, Mieloso M, Rigamonti LM, Nicolini G, Zanna C, Carminati P. Acetyl-L-Carnitine prevents and reverts experimental chronic neurotoxicity induced by oxaliplatin, without altering its antitumor properties. Anticancer Res. 2005;25:2681–7.

(4) L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors
Carla Nasca, Dionysios Xenos, Ylenia Barone, Alessandra Caruso, Sergio Scaccianoce, Francesco Matrisciano, Giuseppe Battaglia, Aleksander A. Mathé, Anna Pittaluga, Luana Lionetto, Maurizio Simmaco, Ferdinando Nicoletti
Proc Natl Acad Sci U S A. 2013 Mar 19; 110(12): 4804–4809. Published online 2013 Feb 4. doi: 10.1073/pnas.1216100110

(5) Epigenetics and energetics in ventral hippocampus mediate rapid antidepressant action: Implications for treatment resistance
Benedetta Bigio, Aleksander A. Mathé, Vasco C. Sousa, Danielle Zelli, Per Svenningsson, Bruce S. McEwen, Carla Nasca
Proc Natl Acad Sci U S A. 2016 Jul 12; 113(28): 7906–7911. Published online 2016 Jun 27. doi: 10.1073/pnas.1603111113

Evaluate