X

Check the ingredients!
... live healthy!

 
Hello, Guest!
 
 

 
 
  Objects Tiiips Categories
Eucalyptus globulus leaf oil
"Eucalyptus globulus leaf oil studies"
by AColumn (9309 pt)
2022-Oct-18 18:50

Review Consensus: 10 Rating: 10 Number of users: 1
Evaluation  N. ExpertsEvaluation  N. Experts
1
  
6
  
2
  
7
  
3
  
8
  
4
  
9
  
5
  
10
  1

Compendium of the most significant studies with reference to properties, intake, effects.

Nakamura T, Yoshida N, Yamanoi Y, Honryo A, Tomita H, Kuwabara H, Kojima Y. Eucalyptus oil reduces allergic reactions and suppresses mast cell degranulation by downregulating IgE-FcεRI signalling. Sci Rep. 2020 Dec 1;10(1):20940. doi: 10.1038/s41598-020-77039-5.

Abstract. Eucalyptus oil has been used since ancient times for its bactericidal, anti-inflammatory, analgesic and sedative effects. In recent years, the action of Eucalyptus oil has been scientifically proven, and there have been reports that Eucalyptus oil suppresses the production of chemokines, cytokines and lipid mediators in basophils, alveolar macrophages and monocytes. Based on this information, we aimed to verify whether Eucalyptus oil can be used for allergic dermatitis, the incidence of which has been increasing among human skin diseases. This effect was verified using a mouse IgE-mediated local allergic model. In conclusion, topical application of Eucalyptus oil suppressed oedema and vascular permeability enhancement due to IgE-mediated allergic on the skin. In addition, we also verified the degranuration of mast cells, which is a part of its action, and examined whether 1,8-cineole, which is the main component of Eucalyptus oil, suppresses the phosphorylation of PLCγ and p38 directly or indirectly. 1,8-cineole was found to suppress degranulation of mast cells.

Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential Oils as Antimicrobial Agents-Myth or Real Alternative? Molecules. 2019 Jun 5;24(11):2130. doi: 10.3390/molecules24112130.

Abstract. Herbs and the essential oils derived from them have been used from the beginning of human history for different purposes. Their beneficial properties have been applied to mask unpleasant odors, attract the attention of other people, add flavor and aroma properties to prepared dishes, perfumes, and cosmetics, etc. Herbs and essential oils (EOs) have also been used in medicine because of their biological properties, such as larvicidal action, analgesic and anti-inflammatory properties, antioxidant, fungicide, and antitumor activities, and many more. Many EOs exhibit antimicrobial properties, which is extremely important in fields of science and industry, such as medicine, agriculture, or cosmetology. Among the 250 EOs which are commercially available, about a dozen possess high antimicrobial potential. According to available papers and patents, EOs seem to be a potential alternative to synthetic compounds, especially because of the resistance that has been increasingly developed by pathogenic microorganisms. In this review we summarize the latest research studies about the most-active EOs that are known and used because of their antimicrobial properties. Finally, it is noteworthy that the antimicrobial activities of EOs are not preeminent for all strains. Further investigations should, thus, focus on targeting EOs and microorganisms.

Mota Vde S, Turrini RN, Poveda Vde B.Antimicrobial activity of Eucalyptus globulus oil, xylitol and papain: a pilot study. Rev Esc Enferm USP. 2015 Apr;49(2):216-20. Portuguese. doi: 10.1590/S0080-623420150000200005.

Abstract. Objective: To evaluate the in vitro antimicrobial activity of the Eucalyptus globulus essential oil, and of the xylitol and papain substances against the following microorganisms: Pseudomonas aeruginosa; Samonella sp.; Staphylococus aureus; Proteus vulgaris; Escherichia coli and Candida albicans. Method: The in vitro antimicrobial evaluation was used by means of the agar diffusion test and evaluation of the inhibition zone diameter of the tested substances. Chlorhexidine 0.5% was used as control. ...Conclusion: The Eucalyptus globulus oil has antimicrobial activity against different microorganisms and appears to be a viable alternative as germicidal agent hence, further investigation is recommended.

Karpanen TJ, Conway BR, Worthington T, Hilton AC, Elliott TS, Lambert PA. Enhanced chlorhexidine skin penetration with eucalyptus oil. BMC Infect Dis. 2010 Sep 22;10:278. doi: 10.1186/1471-2334-10-278.

Abstract. Background: Chlorhexidine digluconate (CHG) is a widely used skin antiseptic, however it poorly penetrates the skin, limiting its efficacy against microorganisms residing beneath the surface layers of skin. The aim of the current study was to improve the delivery of chlorhexidine digluconate (CHG) when used as a skin antiseptic....Conclusion: The delivery of CHG into the epidermis and dermis can be enhanced by combination with eucalyptus oil, which in turn may improve biocide contact with additional microorganisms present in the skin, thereby enhancing antisepsis.

Quatrin PM, Verdi CM, de Souza ME, de Godoi SN, Klein B, Gundel A, Wagner R, de Almeida Vaucher R, Ourique AF, Santos RCV. Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp. Microb Pathog. 2017 Nov;112:230-242. doi: 10.1016/j.micpath.2017.09.062. 

Abstract. Candida species are the main responsible microorganisms for causing fungal infections worldwide, and Candida albicans is most frequently associated with infectious processes. Pseudomonas aeruginosa is a gram-negative bacterium commonly found in immunocompromised patients. The infection persistence caused by these microorganisms is often related to antimicrobial resistance and biofilm formation. In this context, the objective of the present study was to prepare and characterize nanoemulsions containing Eucalyptus globulus oil and to verify its antimicrobial and antibiofilm activities against P. aeruginosa and Candida spp. The nanoemulsions had a size of approximately 76 nm, a polydispersity index of 0.22, a zeta potential of - 9,42 mV and a pH of approximately 5.0. The E. globulus oil was characterized by gas chromatography, being possible to observe its main components, such as 1-8-Cineol (75.8%), p- Cymene (7.5%), α-Pinene (7.4%) and Limonene (6.4%). The antimicrobial activity of the nanoemulsion was determined from the macrodilution tests and the cell viability curve, where the minimum fungicidal concentration of 0.7 mg/mL for C. albicans and 1.4 mg/mL for C. tropicalis and C. glabrata were obtained. However, the nanoemulsions did not present antimicrobial activity against P. aeruginosa, since it contains only 5% of the oil, being ineffective for this microorganism. The nanoencapsulated oil action against the formed biofilm was evaluated by atomic force microscopy and calcofluor staining, and the nanoemulsion was more efficient for two of the three Candida species when compared to free oil.

Hendry E, Conway B, Worthington T. Antimicrobial efficacy of a novel eucalyptus oil, chlorhexidine digluconate and isopropyl alcohol biocide formulation. Int J Mol Sci. 2012 Oct 30;13(11):14016-25. doi: 10.3390/ijms131114016. 

Abstract. Effective surface disinfection is a fundamental infection control strategy within healthcare. This study assessed the antimicrobial efficacy of novel biocide formulations comprising 5% and 2% eucalyptus oil (EO) combined with 2% chlorhexidine digluconate (CHG) and 70% isopropyl alcohol (IPA) contained within a wipe. The efficacy of this novel antimicrobial formulation to remove and eliminate methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Candida albicans from steel surfaces was investigated. Adpression studies of pre-contaminated wipes were also utilised to assess their potential to induce cross-contamination between hard surfaces. Furthermore, the bactericidal nature of the EO-formulation was established in addition to time-kill. The EO-containing formulations demonstrated bactericidal antimicrobial efficacy against all microorganisms and did not induce surface cross-contamination. There was no significant difference (p < 0.05) between the 5% and 2% EO formulations in their ability to remove microorganisms from steel surfaces, however both significantly (p < 0.05) removed more than the control formulations. Microbial biofilms were eliminated within 10 min (p < 0.05) when exposed to the EO formulations. Our novel EO-formulation demonstrated rapid antimicrobial efficacy for potential disinfection and elimination of microbial biofilms from hard surfaces and may therefore be a useful adjunct to current infection control strategies currently employed within healthcare facilities.

Evaluate