X

Check the ingredients!
... live healthy!

 
Hello, Guest!
 
 

 
 
  Objects Tiiips Categories
Sesamum indicum seed oil
"Sesamum indicum seed oil studies"
by Ottika11 (2065 pt)
2022-Oct-19 11:10

Review Consensus: 10 Rating: 10 Number of users: 1
Evaluation  N. ExpertsEvaluation  N. Experts
1
  
6
  
2
  
7
  
3
  
8
  
4
  
9
  
5
  
10
  1

Compendium of the most significant studies with reference to properties, intake, effects.

Johnson W Jr, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG Jr, Shank RC, Slaga TJ, Snyder PW, Andersen FA. Amended safety assessment of Sesamum indicum (sesame) seed oil, hydrogenated sesame seed oil, Sesamum indicum (sesame) oil unsaponifiables, and sodium sesameseedate. Int J Toxicol. 2011 May;30(3 Suppl):40S-53S. doi: 10.1177/1091581811406987.   

Abstract. Sesamum indicum (sesame) seed oil and related cosmetic ingredients are derived from Sesamum indicum. Sesamum indicum (sesame) seed oil, sesamum indicum (sesame) oil unsaponifiables, and hydrogenated sesame seed oil function as conditioning agents. Sodium sesameseedate functions as a cleansing agent, emulsifying agent, and a nonaqueous viscosity increasing agent. These ingredients are neither skin irritants, sensitizers, teratogens, nor carcinogens at exposures that would result from cosmetic use. Both animal and human data relevant to the cosmetic use of these ingredients were reviewed. The CIR Expert Panel concluded that these ingredients are safe in the present practices of use and concentration as described in this safety assessment.

Li C, Miao H, Wei L, Zhang T, Han X, Zhang H. Association mapping of seed oil and protein content in Sesamum indicum L. using SSR markers. PLoS One. 2014 Aug 25;9(8):e105757. doi: 10.1371/journal.pone.0105757.

Abstract. Sesame is an important oil crop for the high oil content and quality. The seed oil and protein contents are two important traits in sesame. To identify the molecular markers associated with the seed oil and protein contents in sesame, we systematically performed the association mapping among 369 worldwide germplasm accessions under 5 environments using 112 polymorphic SSR markers. The general linear model (GLM) was applied with the criteria of logP ≥ 3.0 and high stability under all 5 environments. Among the 369 sesame accessions, the oil content ranged from 27.89%-58.73% and the protein content ranged from 16.72%-27.79%. A significant negative correlation of the oil content with the protein content was found in the population. A total of 19 markers for oil content were detected with a R2 value range from 4% to 29%; 24 markers for protein content were detected with a R2 value range from 3% to 29%, of which 19 markers were associated with both traits. Moreover, partial markers were confirmed using mixed linear model (MLM) method, which suggested that the oil and protein contents are controlled mostly by major genes. Allele effect analysis showed that the allele associated with high oil content was always associated with low protein content, and vice versa. Of the 19 markers associated with oil content, 17 presented near the locations of the plant lipid pathway genes and 2 were located just next to a fatty acid elongation gene and a gene encoding Stearoyl-ACP Desaturase, respectively. The findings provided a valuable foundation for oil synthesis gene identification and molecular marker assistant selection (MAS) breeding in sesame.

Asokan S, Emmadi P, Chamundeswari R. Effect of oil pulling on plaque induced gingivitis: a randomized, controlled, triple-blind study. Indian J Dent Res. 2009 Jan-Mar;20(1):47-51. doi: 10.4103/0970-9290.49067.

Abstract. Background: Oil pulling has been used extensively as a traditional Indian folk remedy for many years for strengthening teeth, gums, and the jaw and to prevent decay, oral malodor, bleeding gums, dryness of the throat, and cracked lips. Aims: The aim of this study was to evaluate the effect of oil pulling with sesame oil on plaque-induced gingivitis and to compare its efficacy with chlorhexidine mouthwash....Results: There was a statistically significant reduction of the pre- and post-values of the plaque and modified gingival index scores in both the study and control groups (P < 0.001 in both). There was a considerable reduction in the total colony count of aerobic microorganisms present in both the groups. Conclusion: The oil pulling therapy showed a reduction in the plaque index, modified gingival scores, and total colony count of aerobic microorganisms in the plaque of adolescents with plaque-induced gingivitis.

Jannat B, Oveisi MR, Sadeghi N, Hajimahmoodi M, Behzad M, Nahavandi B, Tehrani S, Sadeghi F, Oveisi M. Effect of Roasting Process on Total Phenolic Compounds and γ-tocopherol Contents of Iranian Sesame Seeds (Sesamum indicum). Iran J Pharm Res. 2013 Fall;12(4):751-8.

Abstract. Sesame (Sesamum indicum L.) seed and oil have long been used widely as healthy foods to supply energy and prevent aging. Some of the main active anti-oxidative constituents in sesame seeds are γ-tocopherol and phenols. The purpose of this study was to investigate the relationship between roasting temperature and time with γ-tocopherol and total phenolic compounds (TPC) of sesame seeds when roasted in a domestic electric oven. Eight cultivars of sesame seeds in this study were Darab, Dezful, Karaj, Moghan, Naz- Branching, Naz-NonBranching, Siah and Varamin. Each cultivar was divided into ten group based on the roasting time (10, 15 and 20 min) and temperatures (180, 200 and 220 °C)andunroasted one. The high-performance liquid chromatography (HPLC) and spectrophotometeric methods were used for γ-tocopherol (n = 80) and TPC (n = 80) analysis, respectively. The γ-tocopherol content ranged from 329 ± 5 mg/L in Naz-Branching sesame oil to 1114±7 mg/L in Siah sesame oil and 169±6 to 577±1 mg/kg in sesame seed respectively. γ-tocopherol content of six cultivars increased significantly (p < 0.05) as the roasting temperature and time; until 200 °C for 10 min, but they were decreased by roasting at 220 °C in longer time. Also TPC increased significantly as the roasting temperature. The amount of TPC varied in different sesame cultivars from 20.109 ± 3.967 μM to 129.300±3.493 in Varamin and Naz- Branching sesame seed cultivars, respectively, also TPC increased from 70.953 ± 5.863 μM in unroasted Naz-Branching sesame seed to 129.300 ± 3.493 μM after roasting in 200 °C for 20 min. The present study showed that Iranian sesame seed can be considered as a good source of natural antioxidant specially after roasting. The optimum temperature and time roasting to obtain the most γ-tocopherol and total phenolic content was 200 °C for 10 and 20 min, respectively.

Warra, A. A. (2011). Sesame (sesamum indicum l.) seed oil methods of extraction and its prospects in cosmetic industry: a review. Bayero Journal of Pure and Applied Sciences, 4(2), 164-168.

Abstract. The relative abundance of sesame seed oil coupled with the little knowledge of its cosmetic usage prompted the need for this review. The aim is to discuss the various extraction methods of the sesame seed oil and its industrial applications particularly its application in cosmetic production. The review focused mainly on the traditional African methods of extraction and the utilization of the seed oil in soap making and production of skin moisturizers.

Carvalho, R. H. R., Galvão, E. L., Barros, J. A. C., Conceição, M. M., & Sousa, E. M. B. D. (2012). Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum Indicum L.). Brazilian Journal of Chemical Engineering, 29, 409-420.

Abstract. This article carried out the extraction of sesame oil by using three extraction techniques: supercritical fluid extraction (SFE), Soxhlet and sequential extraction. The SFE was performed using supercritical carbon dioxide (SC-CO2) as solvent and ethanol as cosolvent. Tests were performed at 20 MPa, 35ºC and a flow rate of 2.5 g CO2/min with a total extraction time of 210 minutes. The Soxhlet extraction was performed for 8 hours, using petroleum ether and ethanol as solvents, until the exhaustion of the oil contained in the seeds. The sequential extraction used ethyl ether, ethanol and water as solvents. The Soxhlet extraction was the most effective (58.93%), while the SFE technique obtained 26.47% as the best result. The antioxidant activity (AA) was determined by the β-carotene/linoleic acid system, with good oxidation inhibition percentages (29.32-83.49%) for all the extracts. The main fatty acids (FA) in sesame oil were oleic and linoleic acids.

Evaluate