"Hydrogenated Palm Glycerides Citrate studies" by FCS777 (5566 pt) | 2022-Nov-21 10:56 |
Evaluation | N. Experts | Evaluation | N. Experts |
---|---|---|---|
1 | 6 | ||
2 | 7 | ||
3 | 8 | ||
4 | 9 | ||
5 | 10 |
Compendium of the most significant studies with reference to properties, intake, effects.
Ziółkowska, D., Syrotynska, I., Shyichuk, A., & Lamkiewicz, J. (2021). Determination of SLES in Personal Care Products by Colloid Titration with Light Reflection Measurements. Molecules, 26(9), 2716.
Abstract. The method of colloid titration with poly(diallyldimethylammonium) chloride has been improved to detect the endpoint with an off-vessel light reflectance sensor. The digital color sensor used measures light reflectance by means of light guides, with no immersion into the reaction solution. In such a method, the optical signal is free of disturbances caused by sticky flocs in the solution. The improved automatic titration set was applied for the determination of sodium laureth sulfate (SLES) in industrial batches and commercial personal care products. The sample color and opacity do not disturb the SLES quantification. When the SLES content lies in the range from 5% to 9%, the optimal sample weight is from 6 g to 3 g.
Hyun, M. Y., Lee, Y., Oh, W. J., Yoo, K. H., Park, K. Y., Kim, M. N., ... & Kim, B. J. (2015). Effects of topical moisturizers on the skin of healthy full-term infants and toddlers. Journal of the Society of Cosmetic Scientists of Korea, 41(1), 63-71.
Abstract. Moisturizers are the most prescribed products in dermatology. Treatment with moisturizers aims to maintain skin integrity and overall well-being by providing a healthy appearance. Moisturizers perform very important functions in baby care; however, there are few studies on the effects of moisturizers on the skin of infants. To investigate the effects of moisturizers on the skin of healthy full-term infants and toddlers, thirty-one healthy, full-term, 6- to 36-month-old infants and toddlers without any dermatologic conditions received moisturizer applied to the whole body except the eyes and diaper area after bathing twice daily for 4 weeks. Clinical assessments were conducted before treatment, immediately after the treatment period, and 1 and 4 weeks after treatment. At all visits, skin hydration, transepidermal water loss (TEWL), skin pH, and skin roughness were measured, the skin surface was photographed, and any adverse events were recorded. After using moisturizer, skin hydration significantly increased and TEWL and roughness significantly decreased. The skin pH was modified to mildly acidic and the skin surface was visually smoother than before treatment. There were no statistical significant differences of effects of moisturizers according to age and sex, and adverse events were not observed. The results of moisturizer application on the skin were increased skin hydration, recovery of barrier function, balancing skin pH within a mildly acidic range, and increasing the smoothness of the skin surface for 4 weeks.
Pisay, M., Bhaskar, K. V., Mehta, C. H., Nayak, U. Y., Koteshwara, K. B., & Mutalik, S. (2022). Drug-Carrier Miscibility in Solid Dispersions of Glibenclamide and a Novel Approach to Enhance Its Solubility Using an Effervescent Agent. AAPS PharmSciTech, 23(8), 1-18.
Abstract. The present research aims to investigate the miscibility, physical stability, solubility, and dissolution rate of a poorly water-soluble glibenclamide (GLB) in solid dispersions (SDs) with hydrophilic carriers like PEG-1500 and PEG-50 hydrogenated palm glycerides (Acconon). Mathematical theories such as Hansen solubility parameters, Flory Huggins theory, Gibbs free energy, and the in silico molecular dynamics simulation study approaches were used to predict the drug-carrier miscibility. To increase the solubility further, the effervescence technique was introduced to the conventional solid dispersions to prepare effervescent solid dispersions (ESD). Solid dispersions (SDs) were prepared by microwave, solvent evaporation, lyophilization, and hot melt extrusion (HME) techniques and tested for different characterization parameters. The theoretical and in silico parameters suggested that GLB would show good miscibility with the selected carriers under certain conditions. Intermolecular hydrogen bonding between the drug and carrier(s) was confirmed by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Solid-state characterizations like powder X-ray diffraction, differential scanning calorimetry, and microscopy confirm the amorphous nature of SDs. The addition of the effervescent agent improved the amorphous nature, due to which the solubility and drug release rate was increased. In vitro and ex vivo intestinal absorption studies showed improved flux and permeability than the pure drug, suggesting an enhanced drug delivery. The GLB solubility, dissolution, and stability were greatly enhanced by the SD and ESD technology.
Bährle-Rapp, M. (2007). Hydrogenated Palm Kernel Amine Oxide. In Springer Lexikon Kosmetik und Körperpflege (pp. 265-265). Springer, Berlin, Heidelberg.
Evaluate |