"Descrizione" by Al222 (19776 pt) | 2024-Oct-23 12:07 |
Evaluation | N. Experts | Evaluation | N. Experts |
---|---|---|---|
1 | 6 | ||
2 | 7 | ||
3 | 8 | ||
4 | 9 | ||
5 | 10 |
Sage (Salvia divinorum or Salvia officinalis), is one of the best known medicinal plants, belongs to the Laminaceae, family of the mind and grows in mild climates.
Kingdom: Plantae
Clade: Angiosperms
Class: Eudicots
Order: Lamiales
Family: Lamiaceae
Genus: Salvia
Species: S. officinalis
Salvia officinalis is a shrub that typically reaches a height of 30-60 cm. The plant forms dense clumps of oblong, thick leaves that emit a strong aroma when crushed. It blooms during the summer, producing small flowers in shades of blue, purple, pink, or white that attract numerous pollinators. These flowers are organized in inflorescences called verticillasters, typical of the Lamiaceae.
The leaves of Salvia officinalis are rich in essential oils, including cineole, borneol, thujone, and camphor, which give the plant its distinctive aroma and its antibacterial and antioxidant properties. Additionally, it contains flavonoids, phenolic acids, and tannins, which contribute to its health benefits, supporting activities such as anti-inflammation and antioxidant protection.
The whole plant, including leaves, is dark green, hairy and gives off a typical aroma.
Studies
Phytochemical analysis reveals a good number of substances useful for human health
Sage extracts have hindered the early stages of colon carcinogenesis by showing chemo-preventive effects (4), preventive or therapeutic activity against angiogenesis-related disorders (5), anti-proliferative activity against tumour cells (6), mutagenic and antimutagenic potential (7), antinociceptive properties on chemical nociception behavioural patterns involving an opioid mechanism (8).
It contains vitamin K and rosmarinic acid (an acid also found in rosemary), which act as antioxidants to combat inflammation and oxidation (1) (2).
Sage leaves contain triterpenoids, such as ursolic acid and oleanoic acid and tannins (3).
It also has properties to improve memory function of brain .
Other interesting components found in sage
Many sage species, among which, used in the medical field:
References____________________________________________________________________
(1) Kelm MA, Nair MG, Strasburg GM, DeWitt DL. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 2000 Mar; 7 (1): 7-13. 2000. PMID: 12240.
Abstract. Anti-oxidant bioassay-directed extraction of the fresh leaves and stems of Ocimum sanctum and purification of the extract yielded the following compounds; cirsilineol [1], cirsimaritin [2], isothymusin [3], isothymonin [4], apigenin [5], rosmarinic acid [6], and appreciable quantities of eugenol. The structures of compounds 1-6 were established using spectroscopic methods. Compounds 1 and 5 were isolated previously from O. sanctum whereas compounds 2 and 3 are here identified for the first time from O. sanctum. Eugenol, a major component of the volatile oil, and compounds 1, 3, 4, and 6 demonstrated good antioxidant activity at 10-microM concentrations. Anti-inflammatory activity or cyclooxygenase inhibitory activity of these compounds were observed. Eugenol demonstrated 97% cyclooxygenase-1 inhibitory activity when assayed at 1000-microM concentrations. Compounds 1, 2, and 4-6 displayed 37, 50, 37, 65, and 58% cyclooxygenase-1 inhibitory activity, respectively, when assayed at 1000-microM concentrations. Eugenol and compounds 1, 2, 5, and 6 demonstrated cyclooxygenase-2 inhibitory activity at slightly higher levels when assayed at 1000-microM concentrations. The activities of compounds 1-6 were comparable to ibuprofen, naproxen, and aspirin at 10-, 10-, and 1000-microM concentrations, respectively. These results support traditional uses of O. sanctum and identify the compounds responsible.
(2) Malencic D, Gasic O, Popovic M, Boza P. Screening for antioxidant properties of Sage reflexa hornem. Phytother Res 2000 Nov; 14 (7): 546-8. 2000. PMID: 12230.
(3) European Scientific Cooperative on Phytotherapy. Salviae officinalis folium. 2nd ed. New York: Thieme; 2003. ESCOP Monographs; pp. 452-5.
(4) Pedro DF, Ramos AA, Lima CF, Baltazar F, Pereira-Wilson C. Colon Cancer Chemoprevention by Sage Tea Drinking: Decreased DNA Damage and Cell Proliferation. Phytother Res. 2016 Feb;30(2):298-305. doi: 10.1002/ptr.5531.
(5) Keshavarz M, Mostafaie A, Mansouri K, Bidmeshkipour A, Motlagh HR, Parvaneh S. In vitro and ex vivo antiangiogenic activity of Salvia officinalis. Phytother Res. 2010 Oct;24(10):1526-31. doi: 10.1002/ptr.3168.
(6) Kontogianni VG, Tomic G, Nikolic I, Nerantzaki AA, Sayyad N, Stosic-Grujicic S, Stojanovic I, Gerothanassis IP, Tzakos AG. Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem. 2013 Jan 1;136(1):120-9. doi: 10.1016/j.foodchem.2012.07.091.
(7) Vuković-Gacić B, Nikcević S, Berić-Bjedov T, Knezević-Vukcević J, Simić D. Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae. Food Chem Toxicol. 2006 Oct;44(10):1730-8. doi: 10.1016/j.fct.2006.05.011.
Abstract. Mutagenic and antimutagenic potential of essential oil (EO) of cultivated sage (S. officinalis L.) and its monoterpenes: thujone, 1,8-cineole, camphor and limonene against UVC-induced mutations was studied with Salmonella/microsome, E. coli WP2, E. coli K12 [Simić, D., Vuković-Gacić, B., Knezević-Vukcević, J., 1998. Detection of natural bioantimutagens and their mechanisms of action with bacterial assay-system. Mutat. Res. 402, 51-57] and S. cerevisiae D7 reversion assays. The toxicity of EO differed, depending on the strain used. The most sensitive were permeable strains TA100, TA102, E. coli K12 IB112 and non-permeable WP2. Mutagenic potential of EO and monoterpenes was not detected, with or without S9. EO reduced the number of UV-induced revertants in a concentration-dependent manner, reaching 50-70% of inhibition at the maximum non-toxic concentrations: 3 microl/plate (TA102), 5 microl/plate (WP2), 7.5 microl/plate (IB112), 30 microl/plate (E. coli K12 SY252) and 60 microl/plate (D7). The metabolic activation had no effect on antimutagenic potential of EO. Similar toxicity of monoterpenes was observed in TA100, E. coli SY252 and D7, with the exception of limonene (less toxic to D7). Reduction of UV-induced revertants by non-toxic concentrations of monoterpenes, tested with SY252 and D7, reached 40-50% at 15-20 microl/plate of thujone, 10 microl/plate of cineole and 1-10 microg/plate of camphor. Limonene showed antimutagenic effect only in D7. Our data recommend sage monoterpenes for further chemoprevention studies.
(8) Rodrigues MR, Kanazawa LK, das Neves TL, da Silva CF, Horst H, Pizzolatti MG, Santos AR, Baggio CH, Werner MF. Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J Ethnopharmacol. 2012 Jan 31;139(2):519-26. doi: 10.1016/j.jep.2011.11.042.
Evaluate |