"Descrizione" by admin (19362 pt) | 2024-May-23 11:42 |
CI 18965 is a chemical compound, a monoazo synthetic yellow dye also known by the name Food Yellow 5
Chemical Name:
disodium;2,5-dichloro-4-[5-methyl-3-oxo-4-[(4-sulfonatophenyl)diazenyl]-1H-pyrazol-2-yl]benzenesulfonate
What it is used for and where
Cosmetics
Restricted cosmetic ingredient as IV/43 come Voce pertinente negli allegati del regolamento europeo sui cosmetici n. 1223/2009. Sostanza o ingrediente segnalato: Disodium 2,5-dichloro-4-(5-hydroxy-3-methyl-4-((sulphophenyl)azo)pyrazol-1-yl)benzenesulphonate
Colorant. This ingredient has the function of colouring the solution in which it is inserted in a temporary, semi-permanent or permanent manner, either alone or in the presence of the complementary components added for colouring.
Safety
The problem associated with azo dyes (monoazo or diazo) is photocatalytic degradation leading to eventual oxidation and subsequent formation of impurities such as aromatic amines some of which have carcinogenic activity (1).
Molecular Formula C16H10Cl2N4Na2O7S2
Molecular Weight 551.3 g/mol
CAS 6359-98-4
UNII Y428W9WW4D
EC Number 228-819-0
Synonyms:
ACID YELLOW 17
FOOD YELLOW 5
References________________________________________________________________________
(1) Chung KT, Stevens SE Jr, Cerniglia CE. The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol. 1992;18(3):175-90. doi: 10.3109/10408419209114557.
Abstract. Azo dyes are widely used in the textile, printing, paper manufacturing, pharmaceutical, and food industries and also in research laboratories. When these compounds either inadvertently or by design enter the body through ingestion, they are metabolized to aromatic amines by intestinal microorganisms. Reductive enzymes in the liver can also catalyze the reductive cleavage of the azo linkage to produce aromatic amines. However, evidence indicates that the intestinal microbial azoreductase may be more important than the liver enzymes in azo reduction. In this article, we examine the significance of the capacity of intestinal bacteria to reduce azo dyes and the conditions of azo reduction. Many azo dyes, such as Acid Yellow, Amaranth, Azodisalicylate, Chicago Sky Blue, Congo Red, Direct Black 38, Direct Blue 6, Direct Blue 15, Direct Brown 95, Fast Yellow, Lithol Red, Methyl Orange, Methyl Red, Methyl Yellow, Naphthalene Fast Orange 2G, Neoprontosil, New Coccine, Orange II, Phenylazo-2-naphthol, Ponceau 3R, Ponceau SX, Red 2G, Red 10B, Salicylazosulphapyridine, Sunset Yellow, Tartrazine, and Trypan Blue, are included in this article. A wide variety of anaerobic bacteria isolated from caecal or fecal contents from experimental animals and humans have the ability to cleave the azo linkage(s) to produce aromatic amines. Azoreductase(s) catalyze these reactions and have been found to be oxygen sensitive and to require flavins for optimal activity. The azoreductase activity in a variety of intestinal preparations was affected by various dietary factors such as cellulose, proteins, fibers, antibiotics, or supplementation with live cultures of lactobacilli.
Evaluate |