X

Check the ingredients!
... live healthy!

 
Hello, Guest!
 
 

 
 
  Objects Tiiips Categories
Capric acid
"Capric acid studies"
by Whiz35 (11826 pt)
2023-Feb-20 14:11

Compendium of the most significant studies with reference to properties, intake, effects.

Negm A, Sedky A, Elsawy H. Capric Acid Behaves Agonistic Effect on Calcitriol to Control Inflammatory Mediators in Colon Cancer Cells. Molecules. 2022 Oct 6;27(19):6624. doi: 10.3390/molecules27196624. 

Abstract. Inflammation prompts cancer development and promotes all stages of tumorigenesis. Calcitriol is a nutraceutical essential regulator for host health benefits. However, the influence of calcitriol on inflammatory mediators involved in cancer cells is not clear. This study aimed to assess the sensitivity of calcitriol alone and combined with capric acid, and identify the possible influence of calcitriol on inflammatory mediators. The colorectal cancer cell line (HCT116) was induced by LPS/TNF-α and the inflammation and metastatic mediators (IL-1β, IL-6, IL-17) were quantified in calcitriol and capric acid supplemented colon cancer cells. The mRNA and protein expression of MMP-2, NF-κB and COX-2 were quantified. The significant reduction in MMP-2 expression was confirmed at combination treatment by zymogram analysis. Our findings demonstrated the anti-inflammatory and anti-metastatic potentials of capric acid and calcitriol in individual exposure in a combination of human colon cancer cell lines (HCT116). These abilities may be due to the inhibition of COX-2 mediators and NF-κB transcription factor and reciprocally regulated MMP-2 and MMP-9 signaling pathways. These findings elucidate the activation of COX-2 and NF-κB via disruption of the cellular outer matrix could be considered a novel molecular target suitable for colorectal cancer therapy. This study confirmed that capric acid activates calcitriol sensitization in colon cancer cells and could be used as a successful supplement for intestinal diseases and colon aberrations.

Suchodolski J, Derkacz D, Bernat P, Krasowska A. Capric acid secreted by Saccharomyces boulardii influences the susceptibility of Candida albicans to fluconazole and amphotericin B. Sci Rep. 2021 Mar 22;11(1):6519. doi: 10.1038/s41598-021-86012-9. 

Abstract. The effect of capric acid, secreted by the probiotic yeasts Saccharomyces boulardii, was evaluated on the activities of fluconazole (FLC) and amphotericin B (AMB) against pathogenic Candida albicans fungus. The findings indicated that capric acid may be a promising additive for use in combination with FLC. A FLC-capric acid combination led to reduced efflux activity of multidrug resistance (MDR) transporter Cdr1p by causing it to relocalize from the plasma membrane (PM) to the interior of the cell. The above effect occurred due to inhibitory effect of FLC-capric acid combination of ergosterol biosynthesis. However, capric acid alone stimulated ergosterol production in C. albicans, which in turn generated cross resistance towards AMB and inhibited its action (PM permeabilization and cytoplasm leakage) against C. albicans cells. This concluded that AMB should not be administered among dietary supplements containing capric acid or S. boulardii cells.

Huang WC, Tsai TH, Chuang LT, Li YY, Zouboulis CC, Tsai PJ. Anti-bacterial and anti-inflammatory properties of capric acid against Propionibacterium acnes: a comparative study with lauric acid. J Dermatol Sci. 2014 Mar;73(3):232-40. doi: 10.1016/j.jdermsci.2013.10.010. 

Abstract. Background: Propionibacterium acnes (P. acnes) is a commensal bacterium which is possibly involved in acne inflammation. The saturated fatty acid, lauric acid (C12:0) has been shown to possess antibacterial and anti-inflammatory properties against P. acnes. Little is known concerning the potential effects of its decanoic counterpart, capric acid (C10:0). Objective: To examine the antibacterial and anti-inflammatory activities of capric acid against P. acnes and to investigate the mechanism of the anti-inflammatory action....Conclusion: Our data demonstrate that both capric acid and lauric acid exert bactericidal and anti-inflammatory activities against P. acnes. The anti-inflammatory effect may partially occur through the inhibition of NF-κB activation and the phosphorylation of MAP kinases. Copyright © 2013 Japanese Society for Investigative Dermatology.

Park EJ, Kim SA, Choi YM, Kwon HK, Shim W, Lee G, Choi S. Capric acid inhibits NO production and STAT3 activation during LPS-induced osteoclastogenesis. PLoS One. 2011;6(11):e27739. doi: 10.1371/journal.pone.0027739. 

Abstract. Capric acid is a second medium-chain fatty acid, and recent studies have shown that fatty acids are associated with bone density and reduce bone turnover. In this study, we investigated the effects of capric acid on lipopolysaccharide (LPS)-induced osteoclastogenesis in RAW264.7 cells. After treatment with capric acid (1 mM), the number of tartrate resistant acid phosphatase (TRAP)-positive cells decreased significantly. Capric acid reduced LPS-induced TRAP expression, an osteoclast differentiation marker, without inhibiting cell viability. LPS strongly upregulated inducible nitric oxide synthase (iNOS) mRNA levels and nitric oxide (NO) production, whereas capric acid inhibited them. Furthermore, capric acid also inhibited monocyte chemoattractant protein-1 (MCP-1) mRNA expression. Subsequently, we investigated various intracellular signaling proteins, including nuclear factor-κB (NF-κB), c-Jun-N-terminal kinase (JNK), extracellular signal regulated kinase 1/2 (ERK1/2), and signal transducer and activator of transcription 1 (STAT1) and STAT3 associated with osteoclastogenesis. Capric acid had no effects on LPS-induced activation of the NF-κB, JNK, ERK1/2, and STAT1 pathways. However, capric acid inhibited LPS-induced phosphorylation of Ser(727) in STAT3. Additionally, stattic (a STAT3 inhibitor) inhibited LPS-induced iNOS and MCP-1 gene expression. In conclusion, we demonstrated that capric acid inhibited LPS-induced osteoclastogenesis by suppressing NO production via the STAT3 pathway. These results suggest that capric acid has important therapeutic implications for treating bone diseases associated with excessive osteoclastogenesis.

Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Łukaszewicz M. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PLoS One. 2010 Aug 10;5(8):e12050. doi: 10.1371/journal.pone.0012050. 

Abstract. Candidiasis are life-threatening systemic fungal diseases, especially of gastro intestinal track, skin and mucous membranes lining various body cavities like the nostrils, the mouth, the lips, the eyelids, the ears or the genital area. Due to increasing resistance of candidiasis to existing drugs, it is very important to look for new strategies helping the treatment of such fungal diseases. One promising strategy is the use of the probiotic microorganisms, which when administered in adequate amounts confer a health benefit. Such a probiotic microorganism is yeast Saccharomyces boulardii, a close relative of baker yeast. Saccharomyces boulardii cells and their extract affect the virulence factors of the important human fungal pathogen C. albicans, its hyphae formation, adhesion and biofilm development. Extract prepared from S. boulardii culture filtrate was fractionated and GC-MS analysis showed that the active fraction contained, apart from 2-phenylethanol, caproic, caprylic and capric acid whose presence was confirmed by ESI-MS analysis. Biological activity was tested on C. albicans using extract and pure identified compounds. Our study demonstrated that this probiotic yeast secretes into the medium active compounds reducing candidal virulence factors. The chief compound inhibiting filamentous C. albicans growth comparably to S. boulardii extract was capric acid, which is thus responsible for inhibition of hyphae formation. It also reduced candidal adhesion and biofilm formation, though three times less than the extract, which thus contains other factors suppressing C. albicans adherence. The expression profile of selected genes associated with C. albicans virulence by real-time PCR showed a reduced expression of HWP1, INO1 and CSH1 genes in C. albicans cells treated with capric acid and S. boulardii extract. Hence capric acid secreted by S. boulardii is responsible for inhibition of C. albicans filamentation and partially also adhesion and biofilm formation.

Evaluate