X

Check the ingredients!
... live healthy!

 
Hello, Guest!
 
 

 
 
  Objects Tiiips Categories
Sulphuric acid
"Sulfuric Acid studies"
by Frank123 (12004 pt)
2023-Apr-17 17:51

Review Consensus: 10 Rating: 10 Number of users: 1
Evaluation  N. ExpertsEvaluation  N. Experts
1
  
6
  
2
  
7
  
3
  
8
  
4
  
9
  
5
  
10
  1

Compendium of the most significant studies with reference to properties, intake, effects.

Scott BR, Yang X, Geornaras I, Delmore RJ, Woerner DR, Reagan JO, Morgan JB, Belk KE. Antimicrobial Efficacy of a Sulfuric Acid and Sodium Sulfate Blend, Peroxyacetic Acid, and Cetylpyridinium Chloride against Salmonella on Inoculated Chicken Wings. J Food Prot. 2015 Nov;78(11):1967-72. doi: 10.4315/0362-028X.JFP-15-170. 

Abstract. Studies were conducted to evaluate the efficacy of a commercial blend of sulfuric acid and sodium sulfate (SSS) in reducing Salmonella on inoculated whole chilled chicken wings and to compare its efficacy to peroxyacetic acid (PAA) and cetylpyridinium chloride (CPC). Wings were spot inoculated (5 to 6 log CFU/ml of sample rinsate) with a five-strain mixture of novobiocin- and nalidixic acid-resistant Salmonella and then left untreated (control) or treated by immersing individual wings in 350 ml of antimicrobial solution. An initial study evaluated two treatment immersion times, 10 and 20 s, of SSS (pH 1.1) and compared cell recoveries following rinsing of treated samples with buffered peptone water or Dey/Engley neutralizing broth. In a second study, inoculated wings were treated with SSS (pH 1.1; 20 s), PAA (700 ppm, 20 s), or CPC (4,000 ppm, 10 s) and analyzed for survivors immediately after treatment (0 h) and after 24 h of aerobic storage at 4°C. Color and pH analyses were also conducted in the latter study. Recovery of Salmonella survivors following treatment with SSS (10 or 20 s) was not (P ≥ 0.05) affected by the type of cell recovery rinse solution (buffered peptone water or Dey/Engley neutralizing broth), but there was an effect (P < 0.05) of SSS treatment time. Immersion of samples for 10 or 20 s in SSS resulted in pathogen reductions of 0.8 to 0.9 and 1.1 to 1.2 log CFU/ml, respectively. Results of the second study showed that there was an interaction (P < 0.05) between antimicrobial type and storage time. Efficacy against Salmonella at 0 h increased in the order CPC , SSS , PAA; however, after 24 h of aerobic storage, pathogen counts of SSS- and PAA-treated wings did not differ (P ≥ 0.05). Overall, the results indicated that SSS applied at pH 1.1 for 20 s was an effective antimicrobial intervention to reduce Salmonella contamination on chicken wings.

Suyama Y, Takaku S, Okawa Y, Matsukubo T. Dental erosion in workers exposed to sulfuric acid in lead storage battery manufacturing facility. Bull Tokyo Dent Coll. 2010;51(2):77-83. doi: 10.2209/tdcpublication.51.77. 

Abstract. Dental erosion, and specifically its symptoms, has long been studied in Japan as an occupational dental disease. However, in recent years, few studies have investigated the development of this disease or labor hygiene management aimed at its prevention. As a result, interest in dental erosion is comparatively low, even among dental professionals. Our investigation at a lead storage battery factory in 1991 found that the work environmental sulfuric acid density was above the tolerable range (1.0mg/m(3)) and that longterm workers had dental erosion. Therefore, workers handling sulfuric acid were given an oral examination and rates of dental erosion by tooth type, rates of erosion by number of working years and rates of erosion by sulfuric acid density in the work environment investigated. Where dental erosion was diagnosed, degree of erosion was identified according to a diagnostic criterion. No development of dental erosion was detected in the maxillary teeth, and erosion was concentrated in the anterior mandibular teeth. Its prevalence was as high as 20%. Rates of dental erosion rose precipitously after 10 working years. The percentages of workers with dental erosion were 42.9% for 10-14 years, 57.1% for 15-19 years and 66.7% for over 20 years with 22.5% for total number of workers. The percentages of workers with dental erosion rose in proportion to work environmental sulfuric acid density: 17.9% at 0.5-1.0, 25.0% at 1.0-4.0 and 50.0% at 4.0-8.0mg/m(3). This suggests that it is necessary to evaluate not only years of exposure to sulfuric acid but also sulfuric acid density in the air in factory workers.

Cavender FL, Williams JL, Steinhagen WH, Woods D. Thermodynamics and toxicity of sulfuric acid mists. J Toxicol Environ Health. 1977 May;2(5):1147-59. doi: 10.1080/15287397709529513.

Abstract. The hygroscopic nature of sulfuric acid mist has not been totally appreciated in previous toxicological work. Sulfuric acid mist, by adsorption or desorption of water, equilibrates rapidly with the relative humidity of its environment. The measured particle diameters of a given sulfuric acid mist will increase in size as the particles adsorb water on entering the respiratory tract. For a dry climate of 5% relative humidity, sulfuric acid mist particles will triple in size in the respiratory tract. At 60% relative humidity, particles will double in size, while particles in humid regions will increase very little. In the respiratory tract, the particles will deposit according to their size at 98% relative humidity. In order to compare toxicity data for sulfuric acid mist, relative humidity must be carefully recorded throughout the experimental procedure.

Flammiger A, Maibach H. Sulfuric acid burns (corrosion and acute irritation): evidence-based overview to management. Cutan Ocul Toxicol. 2006;25(1):55-61. doi: 10.1080/15569520500536634. 

Abstract. Concentrated sulfuric acid causes severe skin injury. To prevent skin destruction, efficient early treatment is of utmost importance. However, regimens suggested in the literature are not always supported by experimental data. Further studies are needed. To improve early management of sulfuric acid burns, future experiments need careful extrapolation between animal skin and human skin. The benefit of water, neutralizer, or alternative agents has to be established by precisely defining acid concentration and time of exposure.

Amdur MO. Health effects of air pollutants: sulfuric acid, the old and the new. Environ Health Perspect. 1989 May;81:109-13; discussion 121-2. doi: 10.1289/ehp.8981109.

Abstract. Data from exposure of experimental animals and human subjects to sulfuric acid presents a consistent picture of its toxicology. Effects on airway resistance in asthmatic subjects were well predicted by data obtained on guinea pigs. Sulfuric acid increases the irritant response to ozone in both rats and man. In donkeys, rabbits, and human subjects, sulfuric acid alters clearance of particles from the lung in a similar manner. These changes resemble those produced by cigarette smoke and could well lead to chronic bronchitis. Data obtained on guinea pigs indicate that very small amounts of sulfuric acid on the surface of ultrafine metal oxide aerosols produce functional, morphological, and biochemical pulmonary effects. Such particles are typical of those emitted from coal combustion and smelting operations. Sulfate is an unsatisfactory surrogate in existing epidemiology studies. Sulfuric acid measurement is a critical need in such studies.

Demirel F, Germec M, Turhan I. Fermentable sugars production from wheat bran and rye bran: response surface model optimization of dilute sulfuric acid hydrolysis. Environ Technol. 2022 Oct;43(24):3779-3800. doi: 10.1080/09593330.2021.1934563. 

Abstract. Optimization of hydrolysis conditions of lignocellulosic biomass is crucial to able to produce value-added products by fermentation. This study not only determines optimal dilute sulfuric acid (H2SO4) hydrolysis conditions of wheat bran (WB) and rye bran (RB) by using one-factor-at-a-time method and subsequently Box-Behnken design but also elucidates chemical composition of hydrolysates yielded under optimal hydrolysis conditions. Based on the results, optimal hydrolysis conditions of WB and RB were 121 and 130°C of temperature, 1/8 and 1/8 w/v of solid to liquid ratio, 2.66 and 1.58% v/v of dilute H2SO4 ratio, and 30 and 16 min of implementation time, respectively. Hydrolysates obtained from WB and RB at these conditions contained 72.7 (0.58 g sugar/g biomass) and 89.4 g/L (0.72 g sugar/g biomass) of reducing sugar concentration, respectively. Hydrolysis rates of WB and RB were 87.79 and 91.33%, respectively. Main reducing sugar in RB hydrolysate was glucose with 31.17 g/L (0.25 g glucose/g biomass) while glucose and xylose were the main monosaccharides with 20.90 (0.17 g glucose/g biomass) and 18.69 g/L (0.15 g xylose/g biomass) in WB hydrolysate, respectively. With acidic hydrolysis of WB and RB, inhibitors such as phenolics, 5-Hydroxymethylfurfural, 2-Furaldehyde (not for RB), acetic acid, and formic acid (not for WB) formed. Catalytic efficiency values of H2SO4 for WB and RB were 15.2 and 24.4 g /g, respectively, indicating that inhibitor concentration in WB hydrolysate was higher than that of RB. These results indicated that WB and RB have a high potential in production of value-added products by fermentation.

Evaluate