![]() | "Descrizione" by admin (19549 pt) | 2024-Apr-18 17:46 |
Streptococcus thermophilus è un batterio termofilo utilizzato comunemente nella produzione di yogurt e formaggi. Questo batterio aiuta a fermentare il lattosio, lo zucchero del latte, trasformandolo in acido lattico. Ciò contribuisce alla coagulazione del latte e allo sviluppo della texture e del sapore caratteristici di questi prodotti lattiero-caseari.
Il nome definisce la struttura della molecola:
Processo di produzione industriale
A cosa serve e dove si usa
Cosmetica - Funzioni INCI
Umettante. Composto igroscopico utilizzato per ridurre al minimo la perdita d'acqua nella pelle e per prevenirne l'essiccazione facilitando un più rapido e maggiore assorbimento di acqua nello strato corneo dell'epidermide. L'epidermide è il più superficiale dei tre strati con cui è composta la pelle umana (epidermide, derma e ipoderma) ed è lo strato che provvede al mantenimento dell'idratazione in tutti e tre gli strati. A sua volta l'epidermide è composta da cinque strati: corneo, il più superficiale, granulare, spinoso, lucido, basale. Gli umettanti hanno la capacità di trattenere nello strato corneo l'acqua che attirano dall'aria ed hanno la funzione di idratare la pelle. Meglio utilizzarli prima degli emollienti che sono a base d'olio.
Agente condizionante della pelle. Rappresenta il perno del trattamento topico della pelle in quanto ha la funzione di ripristinare, aumentare o migliorare la tolleranza cutanea a fattori esterni, compresa la tolleranza dei melanociti. La funzione più importante dell'agente condizionante è prevenire la disidratazione della pelle, ma il tema è piuttosto complesso e coinvolge emollienti ed umettanti che possono essere aggiunti nella formulazione.
Streptococcus thermophilus è anche noto per i suoi benefici per la salute, inclusa la potenziale riduzione dell'intolleranza al lattosio e il supporto alla salute del tratto gastrointestinale. È considerato sicuro e benefico, facendo parte dei probiotici che contribuiscono a mantenere l'equilibrio della flora intestinale.
Ecco alcuni dei principali utilizzi e benefici di Streptococcus thermophilus.
Produzione di Yogurt e Formaggi. Questo batterio è essenziale nel processo di fermentazione del latte, contribuendo alla produzione di yogurt e formaggi (1) come mozzarella e pecorino.
Salute Digestiva. Aiuta a stabilizzare la flora intestinale e può contribuire a ridurre i sintomi di disturbi come l'intolleranza al lattosio, facilitando la digestione del latte nei soggetti sensibili (2).
Effetti probiotici. Come probiotico, Streptococcus thermophilus supporta la salute digestiva e potenzia il sistema immunitario stimolando la produzione di anticorpi e migliorando la resistenza alle infezioni intestinali (3).
Produzione di antibiotici naturali. Produce sostanze con proprietà antibiotiche che possono aiutare a inibire la crescita di batteri patogeni (4).
Miglioramento della texture e del sapore. Nella produzione di alimenti fermentati, contribuisce a migliorare la texture e il sapore, rendendo i prodotti più gradevoli al palato.
Disponibilità. Disponibile in varie forme, incluso come starter culturale per la produzione casalinga di yogurt e formaggi, oltre che in integratori probiotici.
Bibliografia_____________________________________________________________________
(1) Michel V, Martley FG. Streptococcus thermophilus in cheddar cheese--production and fate of galactose. J Dairy Res. 2001 May;68(2):317-25. doi: 10.1017/s0022029901004812. PMID: 11504394.
Abstract. The behaviour of Streptococcus thermophilus in combination with Lactococcus lactis subsp. cremoris or subsp. lactis mesophilic starters in experimental Cheddar cheese is reported. In a standard manufacturing procedure employing a 38 degrees C cook temperature, even very low levels (0.007%) of Str. thermophilus combined with normal levels of the mesophilic starter (1.7%) resulted in increased rates of acid production, the formation of significant amounts of galactose (approximately 13 mmol/kg cheese), and populations nearly equivalent to those of the mesophilic lactic starter in the curd before salting. At a 41 degrees C cook temperature, the Str. thermophilus attained a higher maximum population (approximately log 8.2 colony forming units (cfu)/g) than the Lc. lactis subsp. cremoris (approximately log 6.8 cfu/g) and formed more galactose (approximately 28 mmol/kg). Lactobacillus rhamnosus, deliberately added to a cheese made using Str. thermophilus starter and which contained 24 mmol galactose/kg at day one, utilized all the galactose during the first 3 months of cheese ripening. Adventitious non-starter lactic acid bacteria had the potential to utilize this substrate too, and a close relationship was demonstrated between the increase in this flora and the disapearance of the galactose. Some possible consequences for cheese quality of using Str. thermophilus as a starter component are discussed.
(2) Uriot O, Kebouchi M, Lorson E, Galia W, Denis S, Chalancon S, Hafeez Z, Roux E, Genay M, Blanquet-Diot S, Dary-Mourot A. Identification of Streptococcus thermophilus Genes Specifically Expressed under Simulated Human Digestive Conditions Using R-IVET Technology. Microorganisms. 2021 May 21;9(6):1113. doi: 10.3390/microorganisms9061113.
Abstract. Despite promising health effects, the probiotic status of Streptococcus thermophilus, a lactic acid bacterium widely used in dairy industry, requires further documentation of its physiological status during human gastrointestinal passage. This study aimed to apply recombinant-based in vivo technology (R-IVET) to identify genes triggered in a S. thermophilus LMD-9 reference strain under simulated digestive conditions. First, the R-IVET chromosomal cassette and plasmid genomic library were designed to positively select activated genes. Second, recombinant clones were introduced into complementary models mimicking the human gut, the Netherlands Organization for Applied Scientific Research (TNO) gastrointestinal model imitating the human stomach and small intestine, the Caco-2 TC7 cell line as a model of intestinal epithelium, and anaerobic batch cultures of human feces as a colon model. All inserts of activated clones displayed a promoter activity that differed from one digestive condition to another. Our results also showed that S. thermophilus adapted its metabolism to stressful conditions found in the gastric and colonic competitive environment and modified its surface proteins during adhesion to Caco-2 TC7 cells. Activated genes were investigated in a collection of S. thermophilus strains showing various resistance levels to gastrointestinal stresses, a first stage in the identification of gut resistance markers and a key step in probiotic selection.
(3) Vitetta L, Llewellyn H, Oldfield D. Gut Dysbiosis and the Intestinal Microbiome: Streptococcus thermophilus a Key Probiotic for Reducing Uremia. Microorganisms. 2019 Jul 31;7(8):228. doi: 10.3390/microorganisms7080228.
Abstract. In the intestines, probiotics can produce antagonistic effects such as antibiotic-like compounds, bactericidal proteins such as bacteriocins, and encourage the production of metabolic end products that may assist in preventing infections from various pathobionts (capable of pathogenic activity) microbes. Metabolites produced by intestinal bacteria and the adoptions of molecular methods to cross-examine and describe the human microbiome have refreshed interest in the discipline of nephology. As such, the adjunctive administration of probiotics for the treatment of chronic kidney disease (CKD) posits that certain probiotic bacteria can reduce the intestinal burden of uremic toxins. Uremic toxins eventuate from the over manifestation of glucotoxicity and lipotoxicity, increased activity of the hexosamine and polyol biochemical and synthetic pathways. The accumulation of advanced glycation end products that have been regularly associated with a dysbiotic colonic microbiome drives the overproduction of uremic toxins in the colon and the consequent local pro-inflammatory processes. Intestinal dysbiosis associated with significant shifts in abundance and diversity of intestinal bacteria with a resultant and maintained uremia promoting an uncontrolled mucosal pro-inflammatory state. In this narrative review we further address the efficacy of probiotics and highlighted in part the probiotic bacterium Streptococcus thermophilus as an important modulator of uremic toxins in the gut of patients diagnosed with chronic kidney disease. In conjunction with prudent nutritional practices it may be possible to prevent the progression of CKD and significantly downregulate mucosal pro-inflammatory activity with the administration of probiotics that contain S. thermophilus.
(4) Tarrah A, Treu L, Giaretta S, Duarte V, Corich V, Giacomini A. Differences in Carbohydrates Utilization and Antibiotic Resistance Between Streptococcus macedonicus and Streptococcus thermophilus Strains Isolated from Dairy Products in Italy. Curr Microbiol. 2018 Oct;75(10):1334-1344. doi: 10.1007/s00284-018-1528-7.
Abstract. Streptococcus thermophilus and S. macedonicus are the only two species of the genus related to food productions so far known. In the present study, eight S. thermophilus and seven S. macedonicus strains isolated from dairy environments in Italy were compared in order to evidence possible species-specific technological characteristics. Their capability to use lactose, galactose, fructose, and glucose, sugars commonly present in foods and two carbohydrates considered as prebiotics, xylose and inulin, along with the respective growth kinetics were studied. Results showed a luxuriant growth on lactose and different behaviors on galactose, glucose, and fructose. No growth on inulin and xylose was recorded, which is a positive feature for strains intended to be used as starter cultures. Growth parameters, namely, λ, µmax, and Nmax, were estimated by using the Gompertz model. Antibiotic resistance to 14 drugs revealed an overall similar behavior between the two species with only a marked difference regarding gentamycin. Antimicrobial activity was also tested against six deleterious bacterial strains, but none of the strains evidenced inhibitory capabilities. The results presented here could be helpful to compare technological potentialities of the two species and to choose strains of the most suitable species for selected microbiological food transformations.
Evaluate |