PEG-100 Stearate
Rating : 7
Evaluation | N. Experts | Evaluation | N. Experts |
---|---|---|---|
1 | 6 | ||
2 | 7 | ||
3 | 8 | ||
4 | 9 | ||
5 | 10 |
Cons:
Ethoxylated chemical compound (1)10 pts from Whiz35
Sign up to vote this object, vote his reviews and to contribute to Tiiips.Evaluate | Where is this found? |
"Descrizione" about PEG-100 Stearate Review Consensus 10 by Whiz35 (11828 pt) | 2023-Jul-20 12:32 |
Read the full Tiiip | (Send your comment) |
PEG-100 Stearate is a chemical compound, an ester of stearic acid and polyethylene glycol.
The name describes the structure of the molecule:
Description of the raw materials used in its production:
Industrial chemical synthesis step-by-step:
It appears in the form of a white or yellowish powder.
What it is used for and where
Cosmetics
Surfactant - Cleansing agent. Cosmetic products used to cleanse the skin utilise the surface-active action that produces a lowering of the surface tension of the stratum corneum, facilitating the removal of dirt and impurities.
It functions also as an emollient, non-ionic dispersing emulsifier. Emulsifiers have the property of directly influencing the stability, sensory properties and surface tension of sunscreens, modulating their filmometric performance.
Pharmaceuticals
As a pharmaceutical solvent enhancement.
Other uses
Used in industrial cleaning and textile washing. In chemical fibres it can improve fibre softness. Paper chemicals, auxiliary agents for plastics.
Safety
There is a lot of literature on PEGs that has addressed, discussed and drawn conclusions on their possible toxicity, but PEGs differ widely, as do the production techniques and the impurities present in the final products. PEG-100 Stearate does not have high penetration power into the skin and therefore no serious toxicity problems have been detected so far.
Typical commercial product characteristics PEG-100 Stearate
Appearance | White to yellowish powder |
pH | 5 - 7 sol. 5% |
Boiling Point | 438.4±18.0 °C at 760 mmHg |
Melting Point | 47°C |
Decomposition | >200°C |
Density | 0.9±0.1 g/cm3 |
Flash Point | 164.6±14.0°C |
Vapor Pressure | 0.0±2.4 mmHg at 25°C |
Refraction Index | 1.457 |
PSA | 46.53000 |
LogP | 7.85 |
Loss on Drying | ≤5.0% |
Ash | ≤5.0% |
Heavy metals | NMT 10ppm |
Arsenic | NMT 2ppm |
Cadmium | NMT 2ppm |
Lead | NMT 2ppm |
Mercury | NMT 2ppm |
Total Plate | 10,000cfu/g Max |
Yeast & Mold | 1,000cfu/g Max |
Safety |
Synonyms
____________________________
Premise on PEG.
Since the PEG (1) family is numerous and is found in many cosmetic, cleaning and medicinal products and others, we need a cognitive premise on the subject that is rather complex from the point of view of safety because these products not only come into contact with the skin but, as in the case of medicine, they are also ingested.
PEG or polyethylene glycols polymerise the condensed ethylene oxide and water and are called polyethylene glycols, but in reality, they are complex chemical components, polymers bound together. For example, plastic is polyethylene and has a hard consistency, while polyethylene aggregated to the glycol forms a liquid.
The number that appears after the initials PEG represents the molecular weight and the higher this number is, the less it penetrates the skin.
Here below are some studies in Medicine that refer to the use of PEG Polyethylene glycol in various fields.
Intestine
Polyethylene glycol with or without electrolytes is effective for the treatment of functional constipation, both in adults and in paediatric patients, with great safety and tolerability. These preparations are the most effective osmotic laxatives (more than lactulose) and are the first-line treatment for functional constipation in the short- and long-term. They are as effective as enemas in faecalomas, avoid the need for hospitalisation and are well tolerated by patients (especially when given without electrolytes) (2).
In the preparation for colonoscopy, polyethylene glycol tablets confirmed efficacy, acceptability, tolerance and safety similar to those of sodium phosphate (3).
For peripheral nerve repair (4).
Eyes
Dry eye syndrome is a disorder that affects 5-34% of the world's adult population with reduced quality of life. Artificial or lubricating tears are the most used therapy for treating this condition due to their low side effects profile, which attempt to modify the properties of the tear film. Polyethylene glycol has demonstrated clinical efficacy in the treatment of this condition (5).
Brain
Polyethylene glycol facilitates the neuroprotective effects of magnesium in head injuries (6).
Tumors
For transarterial chemoembolization, Polyethylene glycol is effective and safe for the treatment of liver cancer, as indicated by good tolerability, quality of life and high tumour response (7).
Cosmetics
Many types of PEG are hydrophilic and are used as creams, topical dermatological preparations and in cosmetic products such as surfactants, emulsifiers, detergents, humectants and skin conditioners.
Safety varies from type to type given the structural complexity (8).
References___________________________________________________________________
(1) Fruijtier-Pölloth C. Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. Toxicology. 2005 Oct 15;214(1-2):1-38. doi: 10.1016/j.tox.2005.06.001.
(2) Mínguez M, López Higueras A, Júdez J. Use of polyethylene glycol in functional constipation and fecal impaction. Rev Esp Enferm Dig. 2016 Dec;108(12):790-806. doi: 10.17235/reed.2016.4571/2016.
Santos-Jasso KA, Arredondo-García JL, Maza-Vallejos J, Lezama-Del Valle P. Effectiveness of senna vs polyethylene glycol as laxative therapy in children with constipation related to anorectal malformation. J Pediatr Surg. 2017 Jan;52(1):84-88. doi: 10.1016/j.jpedsurg.2016.10.021.
(3) Chaussade S, Schmöcker C, Toulemonde P, Muñoz-Navas M, O'Mahony V, Henri F. Phosphate tablets or polyethylene glycol for preparation to colonoscopy? A multicentre non-inferiority randomized controlled trial. Surg Endosc. 2017 May;31(5):2166-2173. doi: 10.1007/s00464-016-5214-1.
Tsunoda T, Sogo T, Iwasawa K, Umetsu S, Oikawa-Kawamoto M, Inui A, Fujisawa T. Feasibility and safety of bowel cleansing using low-volume polyethylene glycol with ascorbic acid before pediatric colonoscopy: A pilot study. Dig Endosc. 2017 Mar;29(2):160-167. doi: 10.1111/den.12756.
(4) Hoffman AN, Bamba R, Pollins AC, Thayer WP. Analysis of polyethylene glycol (PEG) fusion in cultured neuroblastoma cells via flow cytometry: Techniques & optimization. J Clin Neurosci. 2017 Feb;36:125-128. doi: 10.1016/j.jocn.2016.10.032.
(5) Pérez-Balbuena AL, Ochoa-Tabares JC, Belalcazar-Rey S, Urzúa-Salinas C, Saucedo-Rodríguez LR, Velasco-Ramos R, Suárez-Sánchez RG, Rodríguez-Carrizalez AD, Oregón-Miranda AA. Efficacy of a fixed combination of 0.09 % xanthan gum/0.1 % chondroitin sulfate preservative free vs polyethylene glycol/propylene glycol in subjects with dry eye disease: a multicenter randomized controlled trial. BMC Ophthalmol. 2016 Sep 20;16(1):164. doi: 10.1186/s12886-016-0343-9.
Labetoulle M, Messmer EM, Pisella PJ, Ogundele A, Baudouin C. Safety and efficacy of a hydroxypropyl guar/polyethylene glycol/propylene glycol-based lubricant eye-drop in patients with dry eye. Br J Ophthalmol. 2017 Apr;101(4):487-492. doi: 10.1136/bjophthalmol-2016-308608.
(6) Busingye DS, Turner RJ, Vink R. Combined Magnesium/Polyethylene Glycol Facilitates the Neuroprotective Effects of Magnesium in Traumatic Brain Injury at a Reduced Magnesium Dose. CNS Neurosci Ther. 2016 Oct;22(10):854-9. doi: 10.1111/cns.12591.
(7) Aliberti C, Carandina R, Sarti D, Mulazzani L, Catalano V, Felicioli A, Coschiera P, Fiorentini G. Hepatic Arterial Infusion of Polyethylene Glycol Drug-eluting Beads for Primary and Metastatic Liver Cancer Therapy. Anticancer Res. 2016 Jul;36(7):3515-21.
(8) Jang HJ, Shin CY, Kim KB. Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use. Toxicol Res. 2015 Jun;31(2):105-36. doi: 10.5487/TR.2015.31.2.105.
Sign up to vote this object, vote his reviews and to contribute to Tiiips.EvaluateClose | (0 comments) |
"PEG-100 Stearate studies" about PEG-100 Stearate Review Consensus 10 by Whiz35 (11828 pt) | 2022-Sep-25 12:21 |
Read the full Tiiip | (Send your comment) |
Compendium of the most significant studies with reference to properties, intake, effects.
Cervantes-Martínez A, Maldonado A. Foaming behaviour of polymer-surfactant solutions. J Phys Condens Matter. 2007 Jun 20;19(24):246101. doi: 10.1088/0953-8984/19/24/246101.
Abstract. We study the effect of a non-ionic amphiphilic polymer (PEG-100 stearate also called Myrj 59) on the foaming behaviour of aqueous solutions of an anionic surfactant (sodium dodecyl sulfate or SDS). The SDS concentration was kept fixed while the Myrj 59 concentration was varied. Measurements of foamability, surface tension and electrical conductivity were carried out. The results show two opposite effects depending on the polymer concentration: foamability is higher when the Myrj 59 concentration is low; however, it decreases considerably when the polymer concentration is increased. This behaviour is due to the polymer adsorption at the air/liquid interface at lower polymer concentrations, and to the formation of a polymer-surfactant complex in the bulk at higher concentrations. The results are confirmed by surface tension and electrical conductivity measurements, which are interpreted in terms of the microstructure of the polymer-surfactant solutions. The observed behaviour is due to the amphiphilic nature of the studied polymer. The increased hydrophobicity of Myrj 59, compared to that of water-soluble polymers like PEG or PEO, increases its 'reactivity' towards SDS, i.e. the strength of its interaction with this anionic surfactant. Our results show that hydrophobically modified polymers have potential applications as additives in order to control the foaming properties of surfactant solutions.
Roh, J. S., Yeom, H. J., Oh, M. J., & Lee, J. Y. (2021). A Study on the Antioxidant and MMPs Protein Expression Inhibitive Effect of Punica granatum L. Extract and Its Stabilization with Liquid Crystal Emulsion. Journal of Life Science, 31(2), 164-174.
Abstract. This study confirmed the potential of Punica granatum L. extract for functional activity verification and cosmetic development. The electron-donating ability of Punica granatum L. extract was shown 60.6% at a 1,000 ㎍/ml concentration. Its ABTS+ radical scavenging ability was shown 93.9% at a 1,000 ㎍/ml concentration. Additionally, the inhibitive effects of elastase and collagenase inhibition effects were measured as 30% and 47.2%, respectively, at a 1,000 ㎍/ml concentration. To determine the effect of Punica granatum L. extract on the proliferation of fibroblasts (CCD-986sk), cell viability was measured using a 3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyl-tetrazoliumbromide (MTT) assay. As a result, survival rates of 130% or higher at a 500 ㎍/ml concentration or less were confirmed. According to the results of Western blot with Punica granatum L. extract, the expression inhibition rates of matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-3 (MMP-3) were decreased by 23.2%, 81.9%, and 69.2%, respectively, at a 100 ㎍/ml concentration. Based on the results above, O/W liquid crystal cream with 0.1% Punica granatum L. extract was prepared. The stabilities were tested at 4, 25, 45, and 50℃. By checking the pH, change over time, and stability by temperature, it was confirmed that all were stable for one month. Thus, Punica granatum L. extract shows potential as a natural material for cosmetics.
Ciriminna, R., Katryniok, B., Paul, S., Dumeignil, F., & Pagliaro, M. (2015). Glycerol-derived renewable polyglycerols: A class of versatile chemicals of wide potential application. Organic Process Research & Development, 19(7), 748-754.
Abstract. Glycerol-derived polyglycerols are a versatile class of biocompatible oligomers whose wide potential application is translating into rapidly increasing levels of utilization across many industries.
Zhang X, Gan Y, Gan L, Nie S, Pan W. PEGylated nanostructured lipid carriers loaded with 10-hydroxycamptothecin: an efficient carrier with enhanced anti-tumour effects against lung cancer. J Pharm Pharmacol. 2008 Aug;60(8):1077-87. doi: 10.1211/jpp.60.8.0014.
Abstract. Most drugs do not have the pharmacokinetic features required for optimal pulmonary delivery. In this study, we developed PEGylated nanostructured lipid carriers (PEG-NLCs) to improve the delivery of anti-tumour agents to lung tumours. PEG-40 NLCs modified with PEG-40 stearate (molecular weight 2000 Da), PEG-100 NLCs modified with PEG-100 stearate (molecular weight 5000 Da) and NLCs without PEG modification were prepared by melt-emulsification and homogenization, and were loaded with 10-hydroxycamptothecin (HCPT). They were investigated in terms of physiological characteristics, biodistribution, cellular uptake, and anti-tumour effect in-vivo. PEG-NLCs exhibited regular morphology, with a spherical shape. The particle size (measured by laser diffraction) was approximately 100 nm. Encapsulation in PEG-NLCs protected the active lactone form of HCPT compared with HCPT solution after incubation with plasma. In biodistribution studies, PEG-NLCs, especially PEG-40 NLCs, had longer circulation time and decreased uptake by the reticuloendothelial system (RES) compared with unmodified NLCs. PEG-NLCs accumulated in the lungs after i.v. injection in mice. PEG-NLCs showed enhanced cellular uptake by human lung adenocarcinoma epithelial A549 cells. In-vivo experiments indicated that PEG-NLCs loaded with HCPT have superior efficacy against A549 lung cancer compared with HCPT solution and NLCs. These results suggest that PEG-NLCs is a promising delivery system for HCPT in the treatment of lung cancer.
Zazenski, R., Ashton, W. H., Briggs, D., Chudkowski, M., Kelse, J. W., MacEachern, L., ... & Gettings, S. D. (1995). Talc: occurrence, characterization, and consumer applications. Regulatory Toxicology and Pharmacology, 21(2), 218-229.
Abstract.… Commonly used solidifiers or gellants include stearyl alcohol, PEG-8 distearate, glyceryl stearate, PEG-100 stearate, steareth-100, stearamide MEA, stearic acid, paraffin, ozokerite, syn…
Sign up to vote this object, vote his reviews and to contribute to Tiiips.EvaluateClose | (0 comments) |
Read other Tiiips about this object in __Italiano (2)
Component type:   Chemical Main substances:  
Last update:   2022-09-25 12:35:46 | Chemical Risk:   Irritant |