Pecans are a type of nut native to North America, known for their sweet and buttery flavor. They are a popular ingredient in many recipes, from pies to side dishes, and are valued not just for their taste but also for their nutritional benefits. Rich in healthy fats, protein, fiber, vitamins, and minerals, pecans are a nutritious addition to any diet.
Nutritional Profile (per 100 grams).
- Calories Approximately 691 kcal.
- Protein About 9 grams, contributing to protein intake.
- Fat About 72 grams, predominantly monounsaturated and polyunsaturated fats.
- Carbohydrates About 14 grams, with part of that coming from fiber.
- Fiber About 10 grams, supporting digestive health.
- Vitamins and Minerals Rich in vitamin E, magnesium, potassium, calcium, and zinc, also containing antioxidants that may help fight inflammation.
Considerations
Pecans offer several health benefits, including supporting heart health, aiding in weight management through their satiety-promoting ability, and potentially improving digestive health. They are also studied for their antioxidant effects, which may help reduce the risk of various chronic diseases.
Culinary Use Versatile in cooking, they can be used in a variety of sweet and savory dishes, from salads and side dishes to desserts and bread.
Safety
Allergies Individuals with nut allergies should avoid pecans.
Consumption While nutritious, pecans are also high in calories, so their consumption should be done in moderation, especially for those monitoring calorie intake.
References_____________________________________________________________________
(1) Delgadillo-Puga C, Torre-Villalvazo I, Noriega LG, Rodríguez-López LA, Alemán G, Torre-Anaya EA, Cariño-Cervantes YY, Palacios-Gonzalez B, Furuzawa-Carballeda J, Tovar AR, Cisneros-Zevallos L. Pecans and Its Polyphenols Prevent Obesity, Hepatic Steatosis and Diabetes by Reducing Dysbiosis, Inflammation, and Increasing Energy Expenditure in Mice Fed a High-Fat Diet. Nutrients. 2023 May 31;15(11):2591. doi: 10.3390/nu15112591. PMID: 37299553; PMCID: PMC10255614.
Abstract. Pecans (Carya illinoinensis) are considered a functional food due to the high content of polyunsaturated fatty acids, dietary fiber and polyphenols. To determine the effect of whole pecans (WP) or a pecan polyphenol (PP) extract on the development of metabolic abnormalities in mice fed a high-fat (HF) diet, we fed C57BL/6 mice with a Control diet (7% fat), HF diet (23% fat), HF containing 30% WP or an HF diet supplemented with 3.6 or 6 mg/g of PP for 18 weeks. Supplementation of an HF diet with WP or PP reduced fat mass, serum cholesterol, insulin and HOMA-IR by 44, 40, 74 and 91%, respectively, compared to the HF diet. They also enhanced glucose tolerance by 37%, prevented pancreatic islet hypertrophy, and increased oxygen consumption by 27% compared to the HF diet. These beneficial effects were associated with increased thermogenic activity in brown adipose tissue, mitochondrial activity and AMPK activation in skeletal muscle, reduced hypertrophy and macrophage infiltration of subcutaneous and visceral adipocytes, reduced hepatic lipid content and enhanced metabolic signaling. Moreover, the microbial diversity of mice fed WP or PP was higher than those fed HF, and associated with lower circulating lipopolysaccharides (~83-95%). Additionally, a 4-week intervention study with the HF 6PP diet reduced the metabolic abnormalities of obese mice. The present study demonstrates that WP or a PP extract prevented obesity, liver steatosis and diabetes by reducing dysbiosis, inflammation, and increasing mitochondrial content and energy expenditure. Pecan polyphenols were mainly condensed tannin and ellagic acid derivatives including ellagitannins as determined by LC-MS. Herein we also propose a model for the progression of the HF diet-mediated metabolic disorder based on early and late events, and the possible molecular targets of WP and PP extract in preventive and intervention strategies. The body surface area normalization equation gave a conversion equivalent to a daily human intake dose of 2101-3502 mg phenolics that can be obtained from 110-183 g pecan kernels/day (22-38 whole pecans) or 21.6-36 g defatted pecan flour/day for an average person of 60 kg. This work lays the groundwork for future clinical studies.
(2) Hudthagosol C, Haddad EH, McCarthy K, Wang P, Oda K, Sabaté J. Pecans acutely increase plasma postprandial antioxidant capacity and catechins and decrease LDL oxidation in humans. J Nutr. 2011 Jan;141(1):56-62. doi: 10.3945/jn.110.121269.
Abstract. Bioactive constituents of pecan nuts such as γ-tocopherol and flavan-3-ol monomers show antioxidant properties in vitro, but bioavailability in humans is not known. We examined postprandial changes in plasma oxygen radical absorbance capacity (ORAC) and in concentrations of tocopherols, catechins, oxidized LDL, and malondialdehyde (MDA) in response to pecan test meals. Sixteen healthy men and women (23-44 y, BMI 22.7 ± 3.4) were randomly assigned to 3 sequences of test meals composed of whole pecans, blended pecans, or an isocaloric meal of equivalent macronutrient composition but formulated of refined ingredients in a crossover design with a 1-wk washout period between treatments. Blood was sampled at baseline and at intervals up to 24 h postingestion. Following the whole and blended pecan test meals, plasma concentrations of γ-tocopherols doubled at 8 h (P < 0.001) and hydrophilic- and lipophilic-ORAC increased 12 and 10% at 2 h, respectively. Post whole pecan consumption, oxidized LDL decreased 30, 33, and 26% at 2, 3, and 8 h, respectively (P < 0.05), and epigallocatechin-3-gallate concentrations at 1 h (mean ± SEM; 95.1 ± 30.6 nmol/L) and 2 h (116.3 ± 80.5 nmol/L) were higher than at baseline (0 h) and after the control test meal at 1 h (P < 0.05). The postprandial molar ratio of MDA:triglycerides decreased by 37, 36, and 40% at 3, 5, and 8 h, respectively (P < 0.05), only when whole and blended pecan data were pooled. These results show that bioactive constituent of pecans are absorbable and contribute to postprandial antioxidant defenses.
(3) Guarneiri LL, Spaulding MO, Marquardt AR, Cooper JA, Paton CM. Acute consumption of pecans decreases angiopoietin-like protein-3 in healthy males: a secondary analysis of randomized controlled trials. Nutr Res. 2021 Aug;92:62-71. doi: 10.1016/j.nutres.2021.06.001.