Tripeptide-62 is a chemical compound, a synthetic peptide, and a molecule composed of three amino acids linked together: aspartic acid, glutamic acid, and lysine.
Peptides are substances consisting of two or more amino acids linked together by a linear chain. Synthetic peptides can be generated as copies of protein fragments by incorporating non-proteinogenic amino acids and modified so as to also increase the proteolytic stability of the molecules.
What it is used for and where
Cosmetics
- Antioxidant agent. Ingredient that counteracts oxidative stress and prevents cell damage. Free radicals, pathological inflammatory processes, reactive nitrogen species and reactive oxygen species are responsible for the ageing process and many diseases caused by oxidation.
- Antiplaque agent. This ingredient has the property of preventing the onset of caries by fighting the bacteria responsible for acid corrosion of teeth.
- Oral care agent. This ingredient can be placed in the oral cavity to improve and/or maintain oral hygiene and health, to prevent or improve a disorder of the teeth, gums, mucous membrane. It provides cosmetic effects to the oral cavity as a protector, cleanser, deodorant.
- Skin protectant. It creates a protective barrier on the skin to defend it from harmful substances, irritants, allergens, pathogens that can cause various inflammatory conditions. These products can also improve the natural skin barrier and in most cases more than one is needed to achieve an effective result.
Tripeptide-62 is an active ingredient used in cosmetic formulations for its ability to significantly improve skin hydration and stimulate cell regeneration processes. This peptide helps to promote the production of key components of the extracellular matrix, such as collagen and elastin, thereby improving skin elasticity and firmness. It is particularly effective at reducing visible signs of aging such as wrinkles and fine lines, contributing to younger, more radiant skin. Tripeptide-62 is commonly used in anti-aging products, including serums and creams, where it provides regenerative benefits and helps maintain healthy, well-hydrated skin.
Medical
Tripeptides and dipeptides have proven useful in biomedical applications (1) and for sensitive skin (2).
References_____________________________________________________________________
(1) Santos S, Torcato I, Castanho MA. Biomedical applications of dipeptides and tripeptides. Biopolymers. 2012;98(4):288-93. doi: 10.1002/bip.22067. PMID: 23193593.
Abstract. Peptides regulate many physiological processes, acting at some sites as endocrine or paracrine signals and at others as neurotransmitters or growth factors, for instance. These molecules represent a major evolution in medical and industrial fields, as it is becoming mandatory to design and exploit molecules that do not necessarily fit the description of classical drug classes. The list of peptides with potential biomedical applications is huge and is growing each year. These biomedical applications range from uses as drugs to flavor-active peptides as ingredients in natural health products, nutraceuticals and functional foods. Among the peptide family, dipeptides and tripeptides are very appealing for drug discovery and development because of their cost-effectiveness, possibility of oral administration, and simplicity to perform molecular structural and quantitative structure-activity studies. Our objective is to review different actual and future uses of dipeptides and tripeptides as well as the major advances and obstacles in this growing area.
(2) Resende DISP, Ferreira MS, Sousa-Lobo JM, Sousa E, Almeida IF. Usage of Synthetic Peptides in Cosmetics for Sensitive Skin. Pharmaceuticals (Basel). 2021 Jul 21;14(8):702. doi: 10.3390/ph14080702.
Abstract. Sensitive skin is characterized by symptoms of discomfort when exposed to environmental factors. Peptides are used in cosmetics for sensitive skin and stand out as active ingredients for their ability to interact with skin cells by multiple mechanisms, high potency at low dosage and the ability to penetrate the stratum corneum. This study aimed to analyze the composition of 88 facial cosmetics for sensitive skin from multinational brands regarding usage of peptides, reviewing their synthetic pathways and the scientific evidence that supports their efficacy. Peptides were found in 17% of the products analyzed, namely: acetyl dipeptide-1 cetyl ester, palmitoyl tripeptide-8, acetyl tetrapeptide-15, palmitoyl tripeptide-5, acetyl hexapeptide-49, palmitoyl tetrapeptide-7 and palmitoyl oligopeptide. Three out of seven peptides have a neurotransmitter-inhibiting mechanism of action, while another three are signal peptides. Only five peptides present evidence supporting their use in sensitive skin, with only one clinical study including volunteers having this condition. Noteworthy, the available data is mostly found in patents and supplier brochures, and not in randomized placebo-controlled studies. Peptides are useful active ingredients in cosmetics for sensitive skin. Knowing their efficacy and synthetic pathways provides meaningful insight for the development of new and more effective ingredients.